
1

Declarative Data Analytics: a Survey
Nantia Makrynioti and Vasilis Vassalos

Abstract—The area of declarative data analytics explores the application of the declarative paradigm on data science and machine
learning. It proposes declarative languages for expressing data analysis tasks and develops systems which optimize programs written
in those languages. The execution engine can be either centralized or distributed, as the declarative paradigm advocates
independence from particular physical implementations. The survey explores a wide range of declarative data analysis frameworks by
examining both the programming model and the optimization techniques used, in order to provide conclusions on the current state of
the art in the area and identify open challenges.

Index Terms—Declarative Programming, Data Science, Machine Learning, Large-scale Analytics

F

1 INTRODUCTION

W ITH the rapid growth of world wide web (WWW)
and the development of social networks, the avail-

able amount of data has exploded. This availability has
encouraged many companies and organizations in recent
years to collect and analyse data, in order to extract in-
formation and gain valuable knowledge. Topic classifica-
tion, sentiment analysis, spam filtering, fraud and anomaly
detection are only a few analytics tasks that have gained
considerable popularity in recent years, along with more
traditional warehouse queries which gather statistics from
data.

Data mining and machine learning (ML) are core ele-
ments of data analysis tasks. However, developing such
algorithms needs not only expertise in software engineering,
but also a solid mathematical background in order to in-
terpret correctly and efficiently the mathematical computa-
tions into a program. Even when experimenting with black
box libraries, evaluating various algorithms for a task and
tuning their parameters, in order to produce an effective
model, is a time-consuming process. Things become more
complicated when we want to leverage parallelization on
clusters of independent computers for analysing big data.
Details concerning load balancing, scheduling or fault toler-
ance can be overwhelming even for an experienced software
engineer.

Research on the data management domain recently
started tackling the above issues by developing systems
that aim at providing high-level primitives for building data
science tasks, which at the same time hide low-level details
of the solution or distributed execution. MapReduce [1] and
Dryad [2] were the first frameworks that paved the way
of large-scale analytics. However, these initial efforts suf-
fered from low usability, as they offered expressive but still
low-level languages to program data analysis algorithms.
Soon the need for higher-level declarative programming
languages became apparent. Systems, such as Hive [3], Pig
[4] and Scope [5], offer higher-level languages that enable
developers to write entire programs or parts of them in

• N. Makrynioti and V. Vassalos are with the Department of Informatics,
Athens University of Economics and Business, Athens, 10434, Greece.
Email: makriniotik@aueb.gr, vassalos@aueb.gr

declarative style. Then, these programs are automatically
translated to MapReduce jobs or Dryad vertices that form
a directed acyclic graph (DAG), which is optimized for
efficient distributed execution.

Apart from the programming model, optimization tech-
niques are another important issue that systems for declar-
ative data analytics address. As the declarative paradigm
implies that the user expresses the logical structure of a pro-
gram, there may be many implementations that compute the
same result, but differ at efficiency level. Rewritings of the
logical structure and physical implementation of a program,
which harness the properties of the operators of a language
in a way similar to relational query optimization, as well
as the use of techniques from the domain of compilers are
explored in the context of declarative data science.

In this survey, we study systems for declarative analytics
by focusing on the aforementioned aspects: programming
model and optimization techniques. The rest of the paper is
organized as follows. Section 2 describes the data analysis
tasks that are considered when we present the capabilities
of different systems and languages and presents seven
properties serving as pillars for declarativity. In section 3
we discuss the example we will use to analyse the classes
of programming models in section 4, where domain specific
languages and libraries are classified into these classes. Sec-
tion 5 examines optimization techniques that are employed
by declarative data analysis systems, whereas section 6
presents a comparison between the surveyed systems based
on specific properties and discusses future directions. Fi-
nally, section 7 concludes the survey.

2 SCOPE

In this work we focus on two popular classes of data
analysis tasks: descriptive and predictive analytics. Descrip-
tive analytics provide insights for the past. This usually
involves complex queries on a database system to extract
aggregated information, such as sum and average statistics
for a collection of records. Data are stored in relations
and relational algebra operators are used to form queries
on them. On the other hand, predictive analytics study
historical data in order to identify trends and produce

2

predictions for future events. ML algorithms for regression,
classification and clustering hold a dominant position in this
class. In this second category, we will address deterministic
ML algorithms, either supervised or unsupervised. Many
of the algorithms that fall into this category, e.g. linear
/ logistic regression, support vector machines (SVM) and
k-means, are expressed using linear algebra operators on
matrices and vectors, and employ an iterative refinement
process to minimize/maximize a given objective function.
The aforementioned algorithms are useful for a variety of
tasks, including demand forecasting, market segmentation
and spam filtering.

What is not covered: regarding the notable area of deep
learning (DL), we consider the study of DL systems as
a topic on its own. DL frameworks [6], [7], [8] provide
infrastructure aiming at setting up neural networks easily.
Their functionality focuses on building layers and choosing
activation functions and optimizers and as such their design
is fairly restrictive in describing other ML algorithms. The
only exceptions that we make in this area regard Tensor-
Flow [9] and PyTorch [10]. Although these frameworks
are popular in the development of neural networks, their
toolkits expand outside the area of deep learning, from
linear algebra and distribution functions to out of the box
algorithms for classification and regression. Furthermore,
probabilistic graphical models, such as Bayesian or Markov
networks, systems such as DeepDive [11], which allow the
definition of inference rules in a declarative manner, as well
as statistical relational learning are orthogonal to the scope
of this survey and we will not study declarative languages
for expressing algorithms in these categories 1. Finally, al-
though Model Management Selection Systems (MSMS) [14],
[15], [16] are relevant to predictive analytics, we do not
include them in this survey, as these systems work at the
task level rather than the algorithm level and optimize for
both accuracy and efficiency, instead of solely efficiency. For
these reasons most of the properties we propose do not fit
the design of MSMS and we find it unsuitable to proceed to
a one-to-one comparison between them and the rest of the
systems surveyed. The mission of MSMS poses interesting
challenges, which constitute an important survey topic on
its own.

In the scope of descriptive and predictive analytics de-
scribed above, we will examine languages and systems from
two perspectives: programming model and optimization
techniques. In each of these perspectives we identify specific
properties, some of which are also proposed in [17], that
play an important role on the objectives of the declarative
programming paradigm. These properties ensure necessary
means to decouple the specification of data analytics pro-
grams from the underlying runtime engine and as a result
provide the ability to design different implementations for a
single specification, which is in alignment with the ”describe
what you want the program to achieve rather than how to
achieve it” mantra of declarative programming. Along with
its definition we also explain how each property contributes
to these goals. The purpose of the seven properties pre-

1. Regarding TensorFlow and PyTorch, we only cover their core APIs
and do not consider libraries and tools inside their ecosystem, such as
TensorFlow Probability [12] and Pyro [13] which are used for graphical
models.

sented below is to provide a way to measure declarativity
under the specific scope of the survey. As we present dif-
ferent categories of data analytics systems in the following
sections, we discuss how they stand in the context of the
proposed declarativity properties.

• Data abstractions: matrices, vectors, tables and any
other data types are exposed as abstractions and
are independent from their physical implementa-
tion in the system, e.g. distributed or dense/sparse
implementations of a matrix. If a system provides
multiple data abstractions, this property requires that
none of these abstractions exposes aspects of its
physical implementation to the user. Abstract data
types decouple an algorithm specification from the
execution engine and allow a system to optimize
internal storage of physical implementations.

• Data processing operators: basic data processing
(DP) operators such as join or group by, which are
common in relational databases, need to be sup-
ported. Relational primitives have well-defined se-
mantics and let the user describe data processing
tasks in a similar manner as with database query
languages.

• Advanced analytics operators: support for primi-
tives widely used in ML, such as linear algebra op-
erators and probability distribution functions. Such
operators have also well-defined semantics and fit
the mathematical description of ML algorithms.

• Plan Optimization: users’ programs are automati-
cally optimized by the system based on properties
and available implementations of the involved op-
erators. Due to DP and ML operators with known
semantics, a system can reason about equivalences
via commutative/associative properties, and reor-
ganization of operations. Well-defined semantics is
the key here, in order to generate equivalent results
through different implementations.

• Limited dependence on UDFs: the main operators
should not serve as second-order functions that take
as input user-defined code in imperative/functional
languages with unknown semantics. This property
goes hand-in-hand with the previous one, because
code with unknown semantics, as it is the case with
user-defined functions, is challenging to optimize
[18], [19], [20].

• Lack of control flow: the user does not have access
to control flow constructs, which specify a specific
order for the execution of the program. This facili-
tates the specification of a problem as a set of data
dependencies rather than a series of statements to
follow.

• Automatic computation of the solution: the min-
imization/maximization of an objective function for
finding the optimal parameters of a model is a shared
process between a wide class of ML algorithms and is
achieved using a handful of mathematical optimiza-
tion routines. A usual example is gradient descent,
which needs to be written by the user in many
of the systems covered by this survey. Automating
these processes by computing the derivatives of a

3

function with automatic differentiation mechanisms
and templating mathematical optimization processes
as a special kind of operation adds a level of ab-
straction and releases the user from coding repetitive
processes based on non-trivial mathematical details.

The focus of the survey is conceptual and architectural.
In principle the existence of optimization techniques facil-
itates better performance. However, conducting a straight
out performance comparison in such a wide and diverse
range of systems provides no meaningful information. We
refer the reader to [21] for a benchmark involving a subset
of the systems surveyed in this paper. We will also see
in our analysis that some systems are more coupled with
their execution engine than others. We consider the aspects
of declarativity as orthogonal to parallel and distributed
execution. That being said, especially in the area of data
processing and descriptive analytics, the paradigm of SQL
showed empirically that a declarative language with prop-
erties similar to the ones we discuss right above has been
successfully and more easily parallelized [22], [23], [24] than
a non-declarative one.

3 RUNNING EXAMPLE

To demonstrate the programming model of the various
categories of systems, we will use Linear Regression (LR)
supplemented with a filtering process of training data at
the beginning. In LR the dependent variable is computed
as in equation 1. Features (xi) are independent variables
whose values are provided by training data, whereas the
values of weights (wi) are unknown and will be provided
by optimizing the LR model.

ŷ(w) =
m∑
i=1

xiwi, m = number of features (1)

To find the optimal values of weights, LR minimizes/-
maximizes an objective function. In our examples we min-
imize Least Squared Error between predictions and actual
values of training observations (see equation 2).

min J(w) =
1

n

n∑
i=1

(yi−wxi)
2, n = number of observations

(2)
The minimization of an objective function is achieved by
a mathematical optimization algorithm. Whenever such an
algorithm is needed in our coding examples, we implement
gradient descent. Gradient descent finds the minimum of a
function by iteratively moving towards the negative of its
gradient as it is shown in equation 3.

w = w − ∂

∂w
J(w) (3)

The particular task at hand is to predict the median value
of houses based on a number of features about a suburb,
such as crime rate, distance from employment centers, etc.
To train the LR model we use the Boston housing dataset 2,
which includes this kind of attributes for the area of Boston.

2. https://www.cs.toronto.edu/ delve/data/boston/bostonDe-
tail.html

In our example, before training, we preprocess the dataset
to filter observations that are very close to Charles river.

The selected running example covers many of the char-
acteristics typically seen in both supervised and unsuper-
vised ML algorithms, as well as functionality that is useful
in descriptive analytic queries. In order to implement the
example at hand, we first need a suitable set of data struc-
tures and operators to express the LR function and Least
Squared Error, which serves as the objective function. In
order to minimize the objective function, we either need an
implementation of a mathematical optimization algorithm
or iteration constructs to be able to express the iterative
process of minimization. Finally, for the preprocessing of
training data, we need a filtering operator, similar to the
one supported in relational algebra.

4 PROGRAMMING MODEL

Systems for large-scale data science started as libraries of
machine learning/data mining algorithms, but in the more
recent years they have evolved into domain-specific lan-
guages that support primitives to code data science tasks
and emphasize on declarative programming. The latter has
become more popular based on the argument that the
simplification of the development of such tasks offers more
flexibility to the users to customize their solutions than
black-box libraries targeted to a particular execution engine.
A number of approaches is followed to fulfil this goal. In the
following subsections we describe each approach in detail
and categorize relevant systems according to their design
choices on the programming model.

4.1 Libraries of Algorithms
In this subsection we present libraries of machine learn-
ing/data mining algorithms, such as SVM and k-means,
implemented with the primitives of an execution engine.
The user is able to write data analysis tasks by calling
functions to load data from various data sources, trans-
form data or use ML algorithms to analyse them. The
programming paradigm is the same as that of a developer
writing code for a single machine and calling functions
from a third-party library or executing commands from
an interactive shell. This code or set of commands is then
executed on a specific, possibly distributed, platform. Below
we present some examples of such libraries and analyze
the programming model using a code snippet 3 that calls
functions from the MLlib [25] library. There are also single
node implementations of machine learning / data mining
software in imperative languages, such as scikit-learn [26]
and Weka [27], but in this section we focus on libraries that
run on top of a platform.

MLlib is a scalable machine learning library on top of
Spark [28]. It includes algorithms for classification, regres-
sion, clustering, recommendations and other useful tasks,
which the user can either run via interactive shells in Scala
and Python or import in her code by calling functions from
APIs in both the aforementioned programming languages,
as well as Java. For historical reasons, we also mention

3. Similar examples using MLlib can be found on
https://spark.apache.org/mllib/

4

here the Apache Mahout project [29], which started as a
library of ML algorithms implemented on Hadoop. Later the
project took a different direction and currently it develops
and maintains a Scala DSL (Domain Specific Language) for
linear algebra, which we will discuss further in section 4.4.

Moving away from distributed processing frameworks,
MADlib [30] is a library of in-database methods for machine
learning and data analysis. The broad know-how that has
been developed over the years for database systems makes
them a promising candidate to encompass data analytics.
MADlib provides a library of SQL-based ML algorithms,
which run on database engines. SQL operators are com-
bined with user defined functions (UDF) in Python and
C++ that implement iteration, linear algebra and matrix
operations, which are prevalent in ML algorithms. Popular
data analysis tasks, such as classification, clustering and
regression, are already implemented in MADlib.

Table 1 summarizes the list of algorithms included in
each library.

Let us illustrate the programming model of such libraries
using the running example of LR described in section 3.

Listing 1: Linear Regression using MLlib library
// Features and Labels
JavaRDD<LabeledPoint> trainingData = data.map(line −> {

String[] tokens = line.split(”,”);
String[] features = tokens[1].split(” ”);
double[] feature vector = new double[features.length];
for (int i = 0; i < features.length; i++){

feature vector[i] = Double.parseDouble(features[i]);
}
return new LabeledPoint(Double.parseDouble(tokens[0]),

Vectors.dense(feature vector));
});

// Data Filtering
JavaRDD<LabeledPoint> filteredTrainingData = trainingData.filter(

point −> {
return (point.features().toArray()[3]==0);

});

filteredTrainingData.cache();

int iterations = 200
double learning rate = 0.0000001

// Training using Linear Regression
final LinearRegressionModel model = LinearRegressionWithSGD.train

(JavaRDD.toRDD(filteredTrainingData), iterations, learning rate);

// Generating predictions
JavaRDD<Tuple2<Double, Double>> predictions labels =

filteredTrainingData.map(point −> {
double prediction = model.predict(point.features());
return new Tuple2<Double, Double>(prediction, point.label())

;
});

The workflow in listing 1 begins with creating a vector
of features for each training observation. Both the features
and the target value are stored in an object that represents
a labeled point, i.e. a data point that is annotated with a
target value. The set of labelled points are stored in a RDD
(Resilient Distributed Dataset) [28], a Spark abstraction for
a collection of elements partitioned across the nodes of a
cluster. After filtering the points based on a specific feature,
a new RDD is created with the same structure, which is
used to train a LR model. The model is then loaded and can
give predictions for new data. In this example we output

TABLE 1: List of Algorithms Provided by Each Library

Algorithm Mahout MLlib MADlib
Logistic Regression X X X
Naive Bayes X X X
Complementaty Naive Bayes X
Random Forest X X X
Hidden Markov Models X
Multilayer Perceptron X
Linear SVM X X
Decision Trees X X
Gradient Boosted Trees X
Regression
Linear Regression X X
Isotonic Regression X
Ordinal Regression X
Clustering
k-means X X X
Fuzzy k-means X
Streaming k-Means X X
Spectral Clustering X
Canopy Clustering X
Bisecting k-Means X
Gaussian Mixture X
Power Iteration Clustering (PIC) X
Recommendations
User-Based Collaboration Filtering X
Item-Based Collaboration Filtering X
Matrix Factorization X X X
Matrix Fact. ALS X X
Matrix Fact. ALS (Impl. Feedback) X
Weighted Matrix Factorization X
SVD++ X
Topic Modelling
LDA X X X
Dimensionality Reduction
SVD X X
PCA X X X
QR Decomposition X
Lanczos Algorithm X
Principal Component Projection X
Data Mining
Apriori X
FP-Growth X
Association Rules X
Optimization Methods / Solvers
Stohastic Gradient Descent X
L-BFGS X
Conjucate Gradient X
Dense/Sparse Linear Systems X
Time Series Analysis
ARIMA X
Statistics
Summary Statistics X X
Hypothesis Testing X X
Streaming Significance Testing X
Pearson’s Correlation X
Cardinality Estimators X
Text Analysis
Term Frequency X
Sparse TF-IDF Vectors from Text X X
Collocations X
Email Archive Parsing X
Utility Functions
PMML Export X X
XML Parsing X
RowSimilarityJob X
Feature Transformations X
Low-Rank Matrix Factorization X
Probabilistic Graphical Models
Conditional Random Fields X

5

predictions again for training data just to showcase how
this can be done using MLlib.

We can see that the MLlib library provides classes for ML
algorithms, such as LinearRegressionWithSGD, and user
defined code is needed mainly for preprocessing tasks,
like transforming data to the format that is required by
the algorithm. However, in case users want to run an ML
algorithm that is not provided by the library, they have
to implement it by using the programming model of the
underlying platform.

Because libraries are developed using a specific pro-
gramming model or language, it depends on this choice
whether the seven declarativity properties described in sec-
tion 2 are covered. For example, regarding the property of
data processing operators, MLlib is built on Spark, which
provides operators for joining or filtering RDDs, whereas in
MADlib one can apply relational operators on tables. Also
these platforms may or may not support optimization of
programs. For these reasons declaritivity properties do not
apply in the context of libraries and we will exclude them
from the final comparison table at the end of the paper.

4.2 Hybrids of SQL and MapReduce

This class includes languages, such as Jaql [31], Strato-
sphere’s Meteor [32], Pig Latin [4] and U-SQL [33] (based
on Scope [5]), which aim to offer a programming model
between SQL and MapReduce. The reasoning behind this
approach is based on the fact that SQL is too rigid for some
data analysis tasks, but on the other hand MapReduce is
too low-level and needs custom code even for the simplest
operations. Custom code not only requires effort to be
written, but it also increases the time spent on debugging
and maintenance. Hence, programs in these languages are
sequences of steps as in procedural programming, but with
each step performing a single high-level transformation,
similar to SQL operations (e.g. filtering and grouping).
Meteor also supports domain-specific operations, such as
part-of-speech and sentence annotation, duplicate detection,
record linkage and other common data analysis tasks.

In the aforementioned languages developers can define
workflows incrementally by storing intermediate results in
variables or using pipe syntax to forward them to the next
expression instead of describing the final desired outcome as
in SQL. Nevertheless, these intermediate results are gener-
ated via declarative operators and the user does not need to
describe how these operators are implemented. Moreover,
these languages usually provide a wider range of opera-
tors than the limited set of primitives used in MapReduce
framework. In case custom code is needed, users can write
user-defined functions. Programs written in those languages
are translated automatically by the system into lower level
code using the programming model of an execution engine,
such as MapReduce and Nephele [34].

Concerning the data model, most of the languages in
this class revolve around the concept of tuple known from
databases or adopt a JSON-like model. Two important as-
pects of these models are schemaless records and arbitrary
nesting. Schema may not be needed or is specified on the
fly and fields of a tuple may store non-atomic values, i.e.
tuples, bags and maps. The argument behind this feature

is that developers of procedural programming are more
familiar with storing multiple values in data structures, such
as arrays, sets, maps, than with normalizing data to tables.

Let us now present the aforementioned features with
more detail using the implementation of the Linear Regres-
sion algorithm in Pig Latin. As stated above, Pig Latin does
not provide implementations of ML algorithms, so the user
has to use its operations and structures to write the code.
We use gradient descent for optimizing the weight values
and our implementation in Pig Latin also includes code for
this procedure.

In listing 2 we compute the prediction for each instance,
the total error and a single iteration of gradient descent.
Given that we have loaded training data from a file to
a bag of tuples, i.e. input_data, we start with filtering
housing instances based on their proximity to Charles river.
Then, we create a new tuple for each instance consist-
ing of the target value and a nested tuple of features,
in order to transform data to a more convenient format
for subsequent operations. These preprocessed tuples are
stored in bag input_data_preprocessed. To combine
each feature with its corresponding weight and compute
products between them, we implement a UDF. The sum
of the differences between predictions and actual target
values gives us the total error, which we want to minimize
using gradient descent. The derivatives and the weight
updates for gradient descent are computed and stored in
bags gradients and weight_updates. Finally, we store
the new weight values in a file.

Listing 2: Linear Regression in Pig Latin
−− Filtering observations
filtered input data = FILTER input data BY f3 == 0;

−− Initialize weights
weight data = LOAD '$input weights' USING PigStorage(',') AS (w0:

double, w1:double, w2:double, w3:double, w4:double, w5:
double, w6:double, w7:double, w8:double, w9:double, w10:
double, w11:double, w12:double);

weight data = FOREACH weight data GENERATE TOTUPLE($0 ..
$12) AS weight vector;

−− features and labels
input data preprocessed = FOREACH filtered input data GENERATE

$13 AS response, TOTUPLE($0 .. $12) AS feature vector;

weight feature tuples = CROSS weight data,
input data preprocessed;

weight feature pairs = FOREACH weight feature tuples GENERATE
response as response:double, WeightFeaturePair(weight vector,
feature vector) as pairs:bag{t:tuple(weight:double, feature:
double, dimension:int)};

−− Generate predictions
predictions = FOREACH weight feature pairs {products=foreach pairs

generate weight*feature as product:double; prediction = (double
)SUM(products.product); GENERATE FLATTEN(pairs) AS (
weight, feature, dimension), response as response, prediction as
prediction;};

−− Errors between prediction and actual target value
errors = FOREACH predictions {error = (prediction − response);

GENERATE weight as weight, feature as feature, dimension as
dimension, error as error;};

−− Gradient Descent steps
gradients = FOREACH errors GENERATE weight, dimension, feature*

error as feature error;

6

weight updates = FOREACH (GROUP gradients BY (dimension,
weight)) {learning rate=0.0000001/(double)COUNT(gradients);
total = SUM(gradients.feature error); weight update=
learning rate*total; new weight=group.weight−weight update;
GENERATE group.dimension as dimension, new weight as
new weight;};

new weights = FOREACH (GROUP weight updates ALL) {in order =
ORDER weight updates BY dimension ASC; tuple weights =
BagToTuple(in order.new weight); GENERATE tuple weights
AS weights;};

final weights = FOREACH new weights GENERATE FLATTEN(
weights);

STORE final weights INTO 'pig LR/weight values' USING PigStorage(
',');

The reason we use UDFs in this code snippet is the lack
of support for iteration over columns in Pig Latin. In our
example, we have two vectors, one for features and one
for weights, and we need to combine each feature with
its corresponding weight. To do so, we need to dive into
the contents of the vectors and process them element by
element. Although iteration over tuples of a bag is provided
by using the foreach operator, there is no obvious way to
do the same for columns without explicitly stating column
numbers or names, which is impossible when we have a
large number of columns. It is important to note that UDFs
are treated as a black box and their code is not optimized,
as it happens with Pig Latin’s operators.

Recall that gradient descent is an iterative algorithm. So
far we have presented one iteration of it, but in practice
we run gradient descent for many iterations or until error
converges. However, Pig Latin does not support loop con-
structs and in order to run this Pig script iteratively, we
need an external program, i.e. a driver, in any programming
language supporting iteration. The driver program should
initialize weights with zero and run the Pig script for a
number of times passing as parameters the paths for feature
and weight files. Due to the lack of iteration support we
are forced to write and read data from files, and repeat
preprocessing steps, which would be avoided if we were
able to use variables for intermediate results after each
iteration.

Regarding the data model, we can observe that during
the loading of the weights a schema is defined. How-
ever, this is not necessary and the LOAD command could
have ended after the delimiter definition. Nested data
structures are also used since the initial bag of tuples
that stores scalar values is transformed to the bag called
input_data_preprocessed, where each tuple consists of
a scalar and a nested tuple.

The main limitation of these languages is the lack of
iteration support. There are some operators for iteration
over data, such as the FOREACH operator of Pig Latin,
but the user is not able to declare that a given group of
operators will be repeated for a number of times or as
long as a certain condition holds. Iterative processes are
common in ML algorithms, which are frequently used for
more advanced data analysis tasks. Given the lack of control
flow and automatic solving methods to provide the values
of the model parameters, the approach of this class of
systems is less frequently used in the context of machine

learning, as different directions that we will discuss in the
rest of the survey proposed more efficient architectures for
the described limitations.

Overall, this class of systems supports five out of the
seven declarativity properties in the context of data ana-
lytics, namely data abstractions, data processing operators,
plan optimization, which will be discussed in section 5, lack
of control flow and UDF free operators.

4.3 Extensions of MapReduce

In this section, programming models propose extensions to
the MapReduce model. They employ the idea of passing
first-order functions to operators that are integrated to an
imperative/functional language, and extend it mainly at
two directions. First, the set of operators provided by these
models is enriched compared to MapReduce, which is lim-
ited to only two operators. For example, join, filter, union
or variants of the map operator, such as flatmap, are imple-
mented by these models, which try to offer an out of the
box solution instead of the tedious fitting of these common
operations to the MapReduce model. For example, Spark
and Tupleware [35] integrate such operators into Scala,
Java or Python, whereas DryadLINQ [36] extends LINQ,
which is a set of constructs operating on datasets enabled in
.NET languages. The second important aspect is that these
programming models allow for arbitrary dataflows, which
combine operators in any order and each logical plan can
form a directed acyclic graph (DAG) instead of a sequence
consisting of a single map and reduce function.

Programming models of this category also take iterative
processes into consideration by allowing in memory pro-
cessing. This enables the development of ML algorithms,
whose optimization methods are mainly iterative processes.
However, when it comes to distributed processing, sup-
porting iteration can be quite challenging, as updates and
propagation of global variables to every node of the clus-
ter at the end of each iteration are not trivial. A few
approaches are followed by the programming models of
this category to address these issues. DryadLINQ has very
limited support of shared state, as it allows read-only shared
objects and computation results become undefined if any
of them is modified. This is an important restriction of the
DryadLINQ model with regard to ML algorithms, as they
usually optimize a model by updating global parameters
after each iteration. Spark and Tupleware use the concepts of
Accumulator and Context respectively. Both objects can be
updated only by associative and commutative operations.
Spark also provides another type of shared variables, which
are called Broadcast variables and are analogous to the read-
only shared variables supported by DryadLINQ. Flink [37]
(initially known as Stratosphere) has also Accumulators,
which share similar features with those in Spark, but their
partial results are only merged at the end of a Flink job. For
computing simple statistics among iterations, Flink provides
Aggregators, which can be used to check for convergence
after each iteration step.

Although the design of MapReduce is not well-suited
for iterative workloads [38], there has been effort on ex-
tending its original programming model to support loop
constructs. Two of these efforts are HaLoop [39] and Twister

7

[40], which provide programming extensions to specify a
termination condition and the input data of a loop, or define
broadcast variables. To efficiently support these extensions,
they developed mechanisms for caching loop-invariant data
and scheduling map/reduce tasks that occur in different
iterations but access the same data to run on the same
machine, as well as a streaming-based runtime so that
intermediate results between iterations are disseminated
from their producing to their consuming map/reduce tasks
without being written on disk. However, due to the wide
adoption of Spark and Flink, which generalized in-memory
processing for DAGs, these solutions did not prevail.

Regarding the data model, the core structures in this
class of systems are immutable collections of records, which
can be distributed and individually processed by a machine
of the cluster. Data types of the elements in a record are
based on the data types provided by the host language.
Collections are also represented by objects of the host lan-
guage. For example DryadLINQ datasets are managed via
DryadTable objects in .NET, whereas Spark RDDs (Resilient
Distributed Datasets) are Scala objects. Spark and Flink,
which are still under active development, support higher
level data representations too, such as SQL tables [41], [42]
and dataframes [43]. In the following implementation of our
running example in Spark we use RDDs to showcase the
properties of the core data representation exposed to the
users, as well as the expressivity capabilities of this class of
frameworks.

In listing 3, training data are represented using a RDD
of objects of class LabeledPoint. Each of these objects
consists of a target value and a vector of features. First,
we filter training observations based on the value of the
third feature in each vector. Weights are also stored in a
vector, which is transformed to a broadcast variable (read-
only variable) in order to be available to every node of the
cluster. Using a map operator, we then compute the error
between the prediction and the target value and store it
as an RDD of double values. A reduce function over the
RDD of errors returns the total error. The gradient descent
algorithm is also implemented in a similar manner. A map
function computes the partial derivative of each error value,
whereas the gradient is given by aggregating over all partial
derivatives.

Listing 3: Linear Regression in Spark

import breeze.linalg.{DenseVector => BDV}
import breeze.linalg.{DenseMatrix => BDM}

def linearRegression (data: RDD[LabeledPoint], sc: SparkContext) {

val trainingData = data.map { line =>
val parts = line.split(',')
val feature vector = new Array[Double](parts.length

−1)
for(i <− 0 to (parts.length −2)){

feature vector(i)=parts(i).toDouble
}
LabeledPoint(parts(parts.length−1).toDouble, Vectors.dense(

feature vector))

}

//Filtering observations
val filteredTrainingData = trainingData.filter {point =>

val features = point.features.toArray
features(3) == 0

}

filteredTrainingData.cache();

val weights = Vectors.zeros(13)

val features = filteredTrainingData.map { point =>
point.features

}.cache()

val numInstances = sc.broadcast(features.count())

//Use of var to define a mutable reference to weights, as they
are

//reassigned after each iteration of gradient descent
var broadcastWeights = sc.broadcast(BDV(weights.toArray))

//Gradient descent
for(i <− 1 to 200){

val errors = filteredTrainingData.map { point =>
val features = BDV(point.features.toArray)
val features transpose = features.t
val label = point.label
(label − (features dot broadcastWeights.value

)) * (label − (features dot
broadcastWeights.value))

}
}

val totalError = (errors.reduce((a, b) => a+b))/(numInstances.
value)

val newWeights = computeGradients(filteredTrainingData,
broadcastWeights, numInstances)

broadcastWeights = sc.broadcast(BDV(newWeights.toArray))

}

def computeGradients (data: RDD[LabeledPoint], inputWeights:org.
apache.spark.broadcast.Broadcast[breeze.linalg.DenseVector[
Double]], numInstances:org.apache.spark.broadcast.Broadcast[
Long]) : breeze.linalg.DenseVector[Double] = {

val learning rate = 0.0000001

val gradients = data.map { point =>
val features = BDV(point.features.toArray)
val features transpose = features.t
val label = point.label
−(2.0/numInstances.value)*(features * (label − (

features dot inputWeights.value)))
}

val totalGradient = gradients.reduce {case (a:(breeze.linalg.
DenseVector[Double]), b:(breeze.linalg.DenseVector[
Double])) =>

BDV((a.toArray, b.toArray).zipped.map(+))}

val weights = (inputWeights.value − (learning rate*totalGradient))
.toDenseVector

return(weights)
}

The same example can be also implemented with RDDs
and array Scala objects without the use of the Breeze library
4. Training data can be represented as a key-value RDD with
key being the ID of an observation and value being an array
consisting of the features and the label of an observation.
Given such a representation, matrix-vector operations can
be written using element-wise numeric operations, aggre-

4. https://github.com/scalanlp/breeze

8

gations and group by functions. For example, the computa-
tion of predictions in linear regression can be expressed as
follows.

Listing 4: Computing predictions as a sum over feature-
weight products
val predictions = filteredTrainingData.map {case (key, value) =>

val w = broadcastWeights.value
var sum=0.0
for(i <− 0 to (numOfFeatures−1)){

sum=sum+(value(i) * w(i))
}
(key, sum)
}

Spark also supports a subset of linear algebra operations,
but this support is currently incomplete and fragmented.
Matrices and vectors are not exposed as data abstractions,
but they rather depend on specific physical implemen-
tations. For example, distributed matrices are supported
in four different formats, RowMatrix, IndexedRowMatrix,
CoordinateMatrix and BlockMatrix. The details of these
formats may not be intuitive to ML experts, who just
need a logical abstraction of a matrix/vector to express
linear algebra computations in their algorithms. Another
important point is that the provided API does not include
the same functionality among the different formats. For
example, one can use element-wise addition and subtraction
only in the BlockMatrix format. Such common operations
are not supported in the other three distributed matrix im-
plementations. These differences may make users to choose
types based not only on format characteristics, but also on
the available functionality. In the following code, we can
observe such conversions from IndexedRowMatrix objects
to BlockMatrix objects, in order to use subtractions.

Listing 5: Computing errors with Spark’s primitives for
linear algebra

// Assuming features and labels are RDDs of IndexedRow objects
initialized earlier

val featuresMatrix = new IndexedRowMatrix(features)
val labelsMatrix = new IndexedRowMatrix(labels)
val weightsMatrix = Matrices.dense(1, numOfFeatures, Array.fill[Double

](numOfFeatures)(1.0))

val weightsMatrix t = weightsMatrix.transpose
val predictions = featuresMatrix.multiply(weightsMatrix t)
val predictions block = predictions.toBlockMatrix()
val labels block = labelsMatrix.toBlockMatrix()
val erros = labels block.subtract(predictions block)

Furthermore, summing over rows of a matrix, which is
needed to compute the total error in LR, is not supported in
any of the formats. One would convert a matrix to an RDD
and implement the computation there. Hence, despite the
combination of RDDs with the Breeze numerical processing
library in listing 3 leads in conversion between Spark’s and
Breeze vectors, this issue also occurs between different types
of matrices and RDDs when using Spark’s built-in API.

At the declarativity front, systems in this category sup-
port three out of seven properties. Data processing and
at least a subset of linear algebra operators is supported.
DAGs of operators are also optimized based on a number
of techniques. Regarding the rest of the properties, data

abstractions are not fully independent, as the user has
access to caching and distribution properties of the data.
For example, in listing 3 we use the cache function to
cache the filtered training observations and the broadcast
function to define that the weights are broadcasted to every
node. Hence, the user is required to have an understanding
about the physical implementation of the data structures
used. This shortcoming have also been recognized by the
developers of Emma [44], a language for parallel data anal-
ysis that is embedded in Scala. Emma serves as a layer
above systems, such as Spark and Flink, and provides a
ubiquitous bag abstraction, which hides the low level details
of the individual data structures in distributed execution
engines. Moreover, because in this class of systems operators
are essentially second-order functions, code that is given as
argument to the functions is written in existing imperative
or functional languages, which makes it quite challenging to
optimize. In the following sections, we describe how Flink
and Tupleware attempt to overcome this problem by doing
static analysis of the code and applying optimizations from
the domain of compilers. Also the integration of operators
into imperative or functional languages exposes control flow
constructs to the user. Finally, the algorithm that computes
the parameters of a machine learning model is coded by the
user and no out of the box solvers, like gradient descent, are
provided.

4.4 Systems Targeted to Machine Learning

Machine learning algorithms usually involve linear algebra
operations, probability distributions and computation of
derivatives. Based on these characteristics, systems in this
category provide domain specific languages (DSLs) and
APIs that support data structures for matrices and vectors,
as well as operations on them, probability distribution func-
tions, and automatic differentation. Some representative
systems of this class are SystemML [45], Mahout Samsara
[29], TensorFlow [9], PyTorch [10], BUDS [46], MLI API [47]
and Lara [48]. Not every one of them supports all of the
aforementioned features and degree of declarativity also
differs. We emphasize such differences using the example of
linear regression written in DML, the declarative language
used in SystemML.

In listing 6, almost every computation is expressed as
a linear algebra operation between matrices and vectors.
SystemML has more recently added frames, a data structure
for tabular data with limited support for transformations,
which however does not include filtering of rows. Most of
the systems in this category does not provide any struc-
ture for relational or tabular data as well. Due to this, we
omit filtering of training observations in listing 6 and load
features and labels directly to matrices. We also create a
one-column matrix for storing weights and initialize it with
zeros. To implement gradient descent we use a loop, where
we compute predictions and gradients, as well as update
weights and total_error in each iteration.

Listing 6: Linear Regression in DML, one of the languages
supported by SystemML
features = data[,1:(ncol(data)−1)];
labels=data[,ncol(data)];
num of observations = nrow(labels);

9

learning rate=0.0000001;
iterations = 200;
Initialize weights to zero
weights = matrix(0,rows = ncol(features),cols=1);

total error = matrix(0,rows = iterations,cols=1);

Gradient descent
predictions = features%*%weights;
error = predictions − labels;
for(i in 1:iterations){

gradients = (t(features)%*%error)/num of observations;
weights = weights − learning rate*rowSums(gradients);
predictions = features%*%weights;
error = predictions − labels;
total error[i,1] = t(error)%*%error;
total error[i,1] = total error[i,1]/(2*num of observations);

}

Iteration is supported via the usual constructs “for” and
“while”, which make it possible to express the entire algo-
rithm in DML, with no need for driver programs in other
languages. In addition to this, linear algebra operators and
matrices provide a more intuitive way to express compu-
tations and keep the code succinct. Similar code could be
written in the rest of the systems in this category but with a
few differences hidden in the details.

Mahout Samsara, which is a Scala DSL for linear algebra
baring a R-like look and feel, allows users to decide about
specific representations of data abstractions and data flow
properties. For example, the user can choose between local
and distributed or dense and sparse matrices, as well as
specify caching and partitioning of the data. These options
diverge from the notion of declarativity. Tensorflow and
PyTorch APIs provide the expressivity of SystemML, but
the user can also leverage automatic generation of gradients
and avoid writing code for this computation. Regarding
declarativity, Tensorflow and Pytorch also expose details of
physical data representation to the user with sparse and
dense tensors. Lara and MLI API support both collections
and matrices, as well as common operations on them. This is
an interesting approach, because they combine data process-
ing and machine learning. However, MLI API is no longer
under active development and the authors claim that many
of the key ideas have been integrated into Spark MLlib and
Keystone ML [49]. Last but not least, BUDS is fundamen-
tally declarative in the sense that each computation is a
list of dependencies among variables and variable updates
happen recursively according to those dependencies. There
are no control flow constructs and iteration is expressed via
recursion. The “for” construct serves for parallel execution
of variable expressions, instead of typical looping.

As far as declarativity properties are concerned, except
from the research prototypes of Lara and MLI API, systems
in this class focus on supporting ML-centric operators, such
as linear algebra and distribution functions, and lack data
processing operators. The main data abstractions are matri-
ces and vectors, but in some of the systems they are not
independent from their physical implementation. Also at
least some basic plan optimization happens in most of the
frameworks. As we will describe in Section 5, some of the
languages presented here are accompanied by optimizers
developed specifically for them, while others are translated
to existing languages and rely on their optimizers or on op-

timizations performed by the execution engine. Regarding
iterative processes, we see that some systems provide loop
constructs, while others, e.g. TensorFlow, support automatic
differentiation and mathematical solvers for encapsulating
the training. Finally, the set of supported operators in this
category does not heavily depend on UDFs.

4.5 Integration of machine learning to databases

In this section we study approaches that attempt to integrate
the development of ML algorithms with a database system
in a different manner from providing a library of algorithms
as UDFs to the user. Approaches in this class follow three
directions: array databases, mathematical optimization on
relational data and extension of the SQL language with
linear algebra data types and operations.

4.5.1 Array databases
Scientific data, such as astronomical images or DNA
sequences, are commonly represented as arrays. Array
databases propose a data model that fits ordered collections
of data better than the relational model. In addition to this,
arrays can be used to represent matrices and vectors widely
involved in ML algorithms.

A prevalent system in this category, SciDB [50] uses the
following data model: an array that consists of dimensions
and attributes. Dimensions serve as indices/coordinates of
each cell, whereas attributes are the actual contents of a
cell. Cells may either contain tuples of attributes or may
be empty (null), so that both dense and sparse arrays can be
represented. Each attribute is of a primitive type (int, float,
char). SciDB also supports the definition of complex types
by the user in a similar way as PostgreSQL 5.

SciDB offers a functional language and a query language
with similar syntax to SQL. It provides common opera-
tions on array data. Those include slicing an array along
a dimension, subsampling a region of an array, filtering
attribute values in an array, applying a computation on the
cells of an array and combining cells from two arrays. Basic
linear algebra operators, such as matrix multiplication and
transpose, are also supported. The implementation of Linear
Regression using SciDB in listing 7 gives more details about
its programming model.

Listing 7: Linear Regression in SciDB

−− Loading data to arrays
create array features <instance id:int64, feature id:int64, val:double

>[i=0:6577];
load(features, '/home/hduser/features.csv',−2,'CSV');
store(redimension(features, <val:double>[instance id=0:505:0:1000;

feature id=0:12:0:1000]), features 2d);

create array labels <instance id:int64, val:double>[i=0:505];
load(labels, '/home/hduser/labels.csv',−2,'CSV');
store(redimension(labels, <val:double>[instance id=0:505:0:32, j

=0:0]), labels 2d);

create array weights <feature id:int64, val:double>[i=0:12];
load(weights, '/home/hduser/weights.csv',−2,'CSV');
store(redimension(weights, <val:double>[feature id=0:12:0:1000, j

=0:0:0:1000]), weights 2d);

5. https://www.postgresql.org/

10

−− Multiplying feature and weight arrays to produce predictions
store(build(<val:double>[row=0:505:0:1000; col=0:0:0:1000],0),C1);
store(gemm(features 2d, weights 2d,C1), predictions);

−− Compute errors between predictions and actual values
store(project(apply(join(predictions,labels 2d), e, predictions.gemm −

labels 2d.val), e), errors);
store(build(<val:double>[row=0:12; col=0:0],0), C);

−− Compute gradients
store(gemm(transpose(features 2d), errors ,C), gradients);
store(apply(gradients, d, gradients.gemm/506), gradients 2);
aggregate(gradients 2,sum(d),col);

−− Compute new values for weights
store(apply(cross join(weights 2d, aggregate(gradients 2, avg(d) as

m)), val2, weights 2d.val−0.00001*m), new weights);
store(redimension(new weights, <val2:double>[feature id=0:12]),

new weights 2);

The first query creates a one-dimensional array, where
each cell is a tuple consisting of a feature id and a feature
value. Feature values from a csv file are loaded to this array
using the load command. We then move on to the imple-
mentation of the Linear Regression model, without filtering
out training observations. SciDB supports filtering of cells
based on boolean expressions by emptying their content,
e.g. filter(A,cell_value<100), but the dimensions of
the array remain the same. Filtering of a matrix by dropping
rows, as we need for observations in our example, or emp-
tying all of their cells based on a condition is not supported
on the specific system. This is justified by the fact that SciDB
targets ordered data, such as images, where rows might be
related to each other.

Back to the code in listing 7, in order to be able to
use linear algebra operators for matrix multiplication or
transpose, we need to transform the initial array to a new
one that is two-dimensional and where each feature value
is stored in a different cell as a tuple with a single attribute,
whereas feature id has become the second dimension. The
same process is also followed for creating arrays for weight
values and labels. When creating an array, the user can also
specify chunk size, which determines the maximum number
of cells in each chunk. Although SciDB can automatically
choose a chunk length based on schema, in the presented
implementation of LR gemm operator complained about the
chosen chunk size being small. This type of properties does
not concern the logical structure of a data analysis prob-
lem and tend to mix logical with physical implementation,
which contradicts the purpose of declarative programming.

The rest of the queries implement the steps of a gra-
dient descent iteration, starting with multiplying weight
and feature matrices to compute predictions using SciDB’s
function gemm. Despite matrix multiplication and transpose
are supported by specific operators/functions, element-
wise addition/subtraction/multiplication are implemented
by joining tables and applying a transformation on their
cells as it is shown in the computation of array errors.
So, regarding linear algebra the design of SciDB follows
two strategies: complicated linear algebra operators are
provided by the database, whereas simpler ones are imple-
mented/emulated using array-based operators. Code below
implements a single iteration of gradient descent, as there
are no constructs to express iterative processes in SciDB.
Similarly to Pig Latin, SciDB operators can be embedded to

an imperative language or use a driver program to execute
SciDB queries multiple times, but of course this is not
optimal performance-wise and it also mixes declarative with
imperative programming.

For reasons of completeness, we also mention TileDB
[51], which is another system relevant to array data man-
agement. It supports the same data model as SciDB, but is
currently more of a storage manager for array data rather
than an array database. Its storage manager module is
accessed via a low level C API, which includes functions
for initializing and finalizing an array (freeing its memory),
loading and retrieving the schema of an array, reading and
writing to an array, iterating over its elements, as well as
synchronizing between files and merging of array updates.

Array databases have been successfully used for data
science tasks on scientific data, as those are naturally repre-
sented with arrays. However, iterative processes in machine
learning, such as gradient descent, cannot be natively sup-
ported using the primitives of these languages. Although
workarounds in other languages can be developed for this
and an extension to the original model [52] has been pro-
posed, iteration is still not integrated into the SciDB query
language and as a result optimized by a query optimizer.
Systems in this category support five out of seven proper-
ties. They support data processing operators on arrays and
a subset of linear algebra operators. Their SQL-like query
language lacks control flow structures. Semantics for both
types of operators are well-defined and do not depend on
user defined functions. Also, despite not as advanced as
in relational databases, some query optimization techniques
are implemented in SciDB. However, data abstractions are
not fully independent, since the user is exposed to array
characteristics, such as chunk size. Finally, algorithms for
automatic computation of the parameters of a model are not
provided.

For relational data to be ported to the array data model,
denormalization is necessary. In the next sections, we anal-
yse other approaches for integrating ML into relational
database systems that model data science tasks on relational
data.

4.5.2 Mathematical Optimization on Relational Data
Mathematical optimization queries regard the expression of
mathematical optimization problems on relational data. Re-
lational databases are extensively used. The ability to inte-
grate the expression of mathematical optimization problems
with a database offers great value, as it would eliminate
the need to manually export and import data to different
systems. As many ML algorithms are deep down numerical
optimization problems, modeling such problems inside a
database would also allow modeling ML tasks.

One such system that allows modeling mathematical
optimization problems on relational data is the LogicBlox
database [53], [54]. The LogicBlox database supports the
expression of linear programs using LogiQL, an extended
variant of Datalog. The user needs only to define the
objective function, the constraints and any other business
logic in LogiQL. Then, a rewriting process, which is called
grounding, transforms the relational form of the convex
optimization program to a matrix format, that is consumed
by an external solver. Grounding involves the automatic

11

creation of predicates that represent the LP instance in its
canonical form, i.e. the matrix A and vectors c and b in
max {cTx|x≥0, Ax≤b}, as well as the rules that populate
these predicates during runtime. As soon as the data are
marshaled to the data structures supported by the solver, the
optimization process of the problem begins. The solver re-
sponds with the computed solution, which is finally stored
back in the database and can be accessed via typical LogiQL
queries.

The LogiQL code in listing 8 implements LR as a linear
program [55], whose objective function is Least Absolute
Error (see equation 4)

min
n∑

i=1

|yi − wxi|, n = number of training observations

(4)
We assume that the type and arity of each predicate
are defined earlier in the program and that the ex-
tensional database (EDB) predicates, i.e. observation,
feature_value and target, are populated by user’s
data. The code snippet begins with defining the
rules that populate the intensional database (IDB), i.e.
the predicates that are not explicitly imported by
the user. The predicate totalError is the objec-
tive function, which is denoted using the annotation
lang:solver:minimal(totalError). The absolute er-
ror between a target value and a prediction is expressed
using two linear constraints, which state that the absolute
error is greater or equal than both the value of the error and
the negative value of the error. The weights of the model,
i.e. the variables of the linear program, are defined using
the annotation lang:solver:variable.

Listing 8: Linear Regression in the LogicBlox database using
LogiQL
//Weight is a LP variable
lang:solver:variable(`weight).

//Abserror is a LP variable
lang:solver:variable(`abserror).

//Data filtering
filtered observation(i) <− observation(i), f=”CHAR”, feature value[f, i

]=v, v=0.0f.

//IDB rule to generate predictions
prediction[i] = v <− agg <<v=total(z)>> filtered observation(i),

feature value[f, i]=v1, weight[f]=v2, z=v1*v2.

//IDB rule to generate error between predicted and actual target values
error[i] = z <− prediction[i] = v1, target actual[i] = v2, z = v1−v2.

//IDB rule to generate the sum of all errors
totalError[] = v <− agg << v=total(z) >> abserror[i]=z1, z=z1.
lang:solver:minimal(`totalError).

//Constraints to implement that abserror is the absolute value of error
filtered observation(i), abserror[i]=v1, error[i]=v2 −> v1>=v2.
filtered observation(i), abserror[i]=v1, error[i]=v2, w=0.0f−v2 −> v1>=

w.

MLog [56] has a similar design to LogicBlox’s frame-
work. It offers a declarative language, whose data model
is based on tensors. The user can create a tensor using
a CREATE command, similar to SQL, and manipulate the
tensor with a set of operations, including slicing and linear
algebra operations. Each MLog program consists of a set

of rules, which create TensorViews based on expressions
involving operations over tensors. The concept is similar
to relational views, which are the result of a query or
intensional database rules in LogiQL / Datalog. The user
can also run MLog queries, which correspond to mathemat-
ical optimization problems. These queries find the optimal
instances for a number of tensors that minimize or maximize
a TensorView defined earlier in the program. This is similar
to the LogiQL annotation ”lang:solver:minimal” that accom-
panies the predicate of the objective function. The solution
to the MLog queries is computed by TensorFlow, which is
also an external system to the database. MLog programs
are automatically translated to Datalog programs by rep-
resenting tensors as a special relation type. Based on this
representation the authors claim that the MLog language
can in principle be integrated with SQL, although they have
not implemented this yet. Finally, Datalog programs are
subsequently translated to TensorFlow code.

To summarize, systems in this category follow the
model+solver paradigm, where the user defines the logical
structure of the model, whose solution is delegated to a
black box system. Regarding data abstractions, they use
relations or attempt to integrate tensors with relations. As
a consequence, they provide relational operators and either
support natively or emulate linear algebra operators wher-
ever it is possible. Plan optimization is implemented via
standard techniques for SQL or Datalog queries. Moreover,
because the supported languages are purely declarative, the
user does not have control over the execution order of the
commands inside a program. However, support for iteration
is not necessary using the approach of this category, as
the computation of the solution which is iterative is not
implemented by the user, rather it is provided by the system.
Finally, operators do not serve as second-order functions.
Although code in imperative languages is supported via
UDFs, their use is not as heavy as we see in the family of
MapReduce extensions. Overall, six out of seven declarativ-
ity properties are covered by frameworks of this class.

4.5.3 In-database Linear Algebra
Following the same direction of modeling ML algorithms
inside the database, a very recent approach [57] extends
the relational model with three data types, matrix, vector
and labelled scalar, as well as a set of operations over the
aforementioned types. These types can be used for attributes
when creating a table, i.e. a column in a table can store a
matrix or a vector. Moreover, within this approach, com-
mon linear algebra operations are integrated into the SQL
language. The user can perform matrix-matrix or matrix-
vector multiplications as part of a query or use standard
SQL aggregations on the elements of a vector. The new set of
operations also includes functions for composing instances
of the new data types, for example the function VECTORIZE
creates a vector from a collection of labelled scalars and
ROWMATRIX / COLMATRIX create a matrix from a set
of vectors.

Both this approach and the systems for mathematical op-
timization in previous section share similar benefits. More-
over, they could also be combined and instead of having a
new declarative language based on tensors or emulating lin-
ear algebra operators using relational operators, one could

12

implement the described extensions in the relational model,
but still use a black-box solver to provide the solution.

This approach also scores high in declarativity as it
extends an already declarative language, i.e. SQL, to support
mode advanced analytics operators from linear algebra.
The only property that is not covered is the automatic
computation of the model parameters, which still needs to
be written by the user in terms of the extended version of
SQL and whose iterative nature is not well-suited to data
querying languages.

4.6 Declarativity and Calculus

In previous sections, we showcased through the example
of LR that users often need to implement challenging me-
chanics of ML algorithms. A common one is the definition
of gradients. Apart from TensorFlow and systems in section
4.5.2, in the rest of the surveyed frameworks the user needs
to define the gradients of the objective function manually,
which requires a certain familiarity with differentiation in
mathematics. A key component to automate this part that
is currently missing from systems for declarative machine
learning is either symbolic [58] or automatic differentiation
[59]. Implementations of symbolic differentiation in com-
puting environments like MATLAB [60] and Mathematica
[61], and automatic differentiation in TensorFlow and a few
frameworks for deep learning indicate the usefulness of this
feature in the ML toolkit.

Despite the difference in the underlying mechanics and
the output of these two differentiation methods, the pro-
gramming interface to the user is pretty much the same in
both approaches. The user calls a method to which it gives
as input a numerical function. By combining techniques for
computation of derivatives with mathematical optimization
algorithms, systems for declarative machine learning can
provide automatic solution of a large class of objective
functions.

5 OPTIMIZATION TECHNIQUES

Program/plan optimization is an important part of the
declarative paradigm. Since the user defines the result and
not how this is computed, the system can provide a number
of possible implementations and choose one that is good
enough, if not optimal, in terms of efficiency. Considering
the systems presented in the previous section, libraries of
algorithms are used as black boxes and may involve hard-
coded optimizations. Nevertheless, the other categories use
either rule or cost-based approaches and borrow their ideas
mainly from two areas: database systems and compilers.

The purpose of this section is to cover optimizations that
transform the structure or the implementation of a program.
Parallelization, scheduling and low-level optimizations re-
garding write operations, unless specifically relevant to
the nature of data science tasks, are out of scope. Also,
systems that leverage optimizers of existing languages, such
as BUDS which translates its programs to SimSQL [62], are
not covered in these sections.

Fig. 1: Logical plan of the program in listing 9 generated by
Pig

5.1 Rule-based optimization
This type of optimizations is based on rules. Every time
certain conditions are met, these rules are triggered and
perform specific transformations on the code. Languages
that support relational operators, such as Pig Latin, U-
SQL and Spark’s SQL API [63], apply typical optimizations
of database systems, e.g pushing filters closer to the data
sources. In the following example in Pig Latin, we can
notice that in the generated logical plan of Fig. 1 the fil-
tering operation is performed before the FOREACH operator,
whereas in the user code they are written in reversed order.
Another optimization that takes place in the logical plan
is the pruning of unused columns. The code states that
four columns of the input data are loaded. However, as
only the first two are used by the rest of the program, the
optimizer transforms the logical plan so that only those two
are eventually loaded.

Listing 9: A simple program in Pig Latin
data = LOAD 'pig/data.csv' USING PigStorage(',') AS (d0:double, d1:

double, d2:double, d3:double);
data projected = FOREACH data GENERATE $0, $1;
data filtered = FILTER data projected BY ($1)>5;
DUMP data filtered;
STORE data filtered INTO 'pig/data filtered.csv' USING PigStorage(',')

;

Other optimizations include pushing LIMIT operators
near data, which is also done with FOREACH when it is com-
bined with FLATTEN operators. The main idea of these tech-
niques is to decrease the number of tuples to be processed by

13

expensive operations, such as join. So, as FLATTEN unnests
data and may increase the number of generated tuples, it is
advised to be moved after the FOREACH operation. Finally,
pipelining of operations on data is also applied when it is
possible. For example two consecutive FOREACH statements
can be merged, in order to avoid a second pass on data. The
capability to pipeline operations and avoid materialization
of intermediate results is possible due to the lazy evaluation
of programs that is supported by many of the described
systems, such as Pig Latin, Jaql and Spark. This means that
logical plans represent just a sequence of steps and are not
physically executed until an output operation is requested,
e.g. a print or store command, allowing the program to
be optimized as a whole. More sophisticated optimizations,
such as reordering of joins, are not easily achieved with rule-
based methods and depend on the computation of some cost
metric, which is the topic of the next section.

Rule-based rewrites are also used by systems that pro-
vide linear algebra operators. For example, SystemML gen-
erates High-level Operator (HOP) plans that represent the
data flow between linear algebra operators, such as cell-
wise multiplication, matrix multiplication or matrix trans-
pose. Those plans are similar to the logical plans used in
databases. An example of a HOP DAG, which corresponds
to the code snippet in listing 10 is displayed in listing 11.

Listing 10: Code sample in DML
gradients = (t(features)%*%error)/m;

At the moment, SystemML does not provide a visualiza-
tion tool for plans, but we can analyse this representation by
identifying a few key components. The first number of each
line is the HOP id and right next to it there is the operation
code. Operation codes are divided into six categories: binary,
unary, aggregate unary, aggregate binary, reorganize and
data. So, b(-) is a binary operator that performs a subtraction
between two cells of a matrix, or ba(+*) is an aggregate
binary operator that first multiplies cells of a matrix and
then sums the individual results. Numbers in parenthesis
explain data dependencies between HOPs. For example,
HOP 63 depends on the output of HOP 55. The first pair
of brackets include characteristics of the output matrix, e.g.
number of rows and columns, whereas the second pair of
brackets provide memory estimates for input data, interme-
diate results and output matrices. Finally, CP (Single Node
Control Program), SP (Spark) and MR (MapReduce) denote
the execution type.

Listing 11: HOP plan generated by SystemML for code in
listing 10
(55) TRead features [506,13,−1,−1,−1] [0,0,0 −> 0MB], CP
(63) r(t) (55) [13,506,−1,−1,−1] [0,0,0 −> 0MB]
(58) TRead error [506,1,−1,−1,−1] [0,0,0 −> 0MB], CP
(64) ba(+*) (63,58) [13,1,−1,−1,−1] [0,0,0 −> 0MB], CP
(66) b(/) (64) [13,1,−1,−1,−1] [0,0,0 −> 0MB], CP

This particular HOP plan begins with reading the fea-
tures that will be used to compute gradients. The computa-
tion of gradients starts at HOP 63, which outputs the trans-
pose of matrix features. The result is read by the operator
with id 64, which multiplies it with the error vector. The
next operator divides the product with scalar m. The size
of the matrices is recorded in the first pair of brackets. For

example, features is a 506x13 matrix, but after applying a
transpose operator it becomes a 13x506 matrix. It is impor-
tant to note that HOPs are logical operators, placeholders
in a sense, that will be replaced by specific implementations
during the Low-level Operator (LOP) planning phase.

SystemML begins optimizing a HOP DAG by applying
a number of static algebraic simplifications and removal
of branches. These algebraic simplifications regard cost-
independent rewrites that are always beneficial no matter
the dimensions of the matrices/vectors involved. For exam-
ple, operations with one or zero, i.e X/1 or X − 0, leave
matrices unchanged and can be replaced by the matrix itself
(X). Another example is the use of binary operations that
can in fact be transformed to unary operations, such as
X+X which can be rewritten to 2 ∗ X . Furthermore, if-else
blocks that depend on constant conditions are replaced with
the body of the corresponding branch. This rewrite makes
propagation of unconditional matrix sizes easier, which is
important for applying cost-based optimization techniques
in a latter phase. Mahout Samsara’s optimizer applies sim-
ilar rule-based rewritings on the logical plan. The choice
of physical operators is also based on heuristics regarding
partitioning and key values, as well as types of distributed
row matrices. However, overall Samsara provides a less
advanced optimizer than SystemML, without support for
cost-based optimization. In addition to this, the optimiza-
tion methods that are used are much less documented and
inspection of the source code seems to be the only available
source of information at the moment.

In the intersection of machine learning and database
systems, a novel research area that factorizes linear alge-
bra computations into a series of relational operators has
emerged [64], [65], [66]. These rewrites aim at reducing com-
putational redundancy caused by joins. For example, when
working on relational data, features are usually split across
different tables, let us say S and R. Hence, the product wTx
between features and weights can be decomposed to inner
products over the base tables S and R. This decomposition
reduces the redundancy that is caused by computing the
inner product when the same tuple from table R is joined
with multiple tuples from table S. The partial inner products
from R can be stored in a relation and reused for every
joined tuple in S. Automating such rewrites remains a chal-
lenge, though. Recent work [67] proposes heuristic rules for
automatically translating a set of linear algebra operators,
which are common in ML, into operations over normalized
data. These rules are based on two simple metrics, whose
role is important on the speedups yielded by the rewritings:
tuple ratio (#tuples of table1/#tuples of table2) and feature
ratio (#columns of table1/#columns of table2) of two joined
tables. Whenever tuple ratio and feature ratio are below
an experimentally tuned threshold, rewriting rules are not
fired. Thresholds are conservative in the sense that they may
wrongly disallow rewritings that could improve runtime.

Apart from the rule-based rewritings described above,
there are also a few simple rules that come from the domain
of compilers. These include techniques like function and
variable inlining, constant folding, common subexpression
elimination and SIMD vectorization. Jaql, SystemML, Tu-
pleware, Spark and TensorFlow already exploit ideas from
this area. Function inlining replaces a function call with

14

the code of the function, whereas parameters become local
variables. Similarly in variable inlining when a variable
is used in an expression, it is replaced by its definition,
which is either an expression or a value. Inlining reduces the
overhead caused by functions calls and variable references,
but at the same time increases memory cost and is usually
avoided for large functions. Constant folding recognizes ex-
pressions over constants and evaluates them at compile time
rather than at runtime. Common subexpression elimination
aims at computing subexpressions that are repeated inside
code once, then all of its redundant appearances would be
removed. For example, TensorFlow accumulates repeated
computations to a single node of the graph, which gets con-
nected with every other node that needs this computation.
Finally, SIMD vectorization achieves data level parallelism
by using the registers of a processor to apply a single
instruction on multiple data simultaneously. This technique
has been recently added to Spark through the Tungsten
project 6. Tupleware also applies SIMD vectorization on
UDFs’ code, which is described in more detail in section
5.3.

Finally, at the physical level many of the systems for
large-scale analytics need rules to translate programs writ-
ten in higher-level languages into the programming model
of the preferred execution engine efficiently. For example,
Jaql and Pig that translate their programs to the MapReduce
model, need to create as few MapReduce jobs as possible in
order to avoid materialization of data between jobs. To do
so, they identify steps of the logical plan which are map-
pable, i.e. can be executed independently over partitions of
data (for example FILTER and FOREACH operators), and
group them into a single Map function. Expressions that are
encountered after a group by operator are executed inside
a Reduce function. They also employ ways to translate
group operators with multiple inputs, such as COGROUP,
either by creating separate map functions for each input
and aggregating them in a single reduce, or by adding a
field which registers each tuple to the dataset it belongs to.
The MapReduce plan for the Pig Latin program in listing
9 is displayed in Fig. 2. We can see that all operations
are grouped inside a single map function, as Pig takes
advantage of the fact that FILTER and FOREACH operations
can be run in parallel over partitions of data. The gain from
such optimizations depends highly on the properties of the
execution engine that each system uses. For example, if we
switch from Hadoop to Spark we can avoid many of the
drawbacks that come with materialization of data between
jobs.

In a similar way of thinking, SciDB’s optimization at the
physical level focuses on minimization of data movement
and efficient parallelization. It follows an adaptive approach
by identifying subtrees of the physical plan where operators
can be pipelined and as a consequence parallelized over
a cluster of machines. For the rest of the plan that cannot
be parallelized, a scatter/gather operator is used, which
gathers the local chunks of the nodes in a buffer and pushes
it to the node where the data need to be transferred. MLog
also employs a textbook static analysis technique, called the

6. https://databricks.com/blog/2015/04/28/project-tungsten-
bringing-spark-closer-to-bare-metal.html

Fig. 2: MapReduce plan of the program in listing 9
generated by Pig

pivoting method [68], to recognize batching opportunities
on the Datalog programs, which have been generated from
translating the initial MLog user programs. The end goal is
again to achieve parallelization by identifying components
in a Datalog program that can be evaluated independently.
After discovering such components, MLog expands every
tensor in the generated TensorFlow code by an extra dimen-
sion denoting its batch. Probably due to space limitations,
the paper includes limited details of this optimization tech-
nique and no examples of the final generated TensorFlow
program are provided.

In order to avoid unnecessary operations in parallel
query plans, U-SQL integrates reasoning about data parti-
tioning into its optimizer [69], It derives the partitioning
properties of physical operators and their operands in a plan
and tries different partitioning schemes that satisfy these
requirements. The authors define a data exchange operator
which repartitions data, i.e. in its physical implementation
consists of a partition and/or merge step. Each partitioning
scheme is implemented via this operator and is determined
using a set of rules generating a valid physical query plan.
For example, if the result of a filter operator needs to
be partitioned over a set of columns, the optimizer can
add a partition operator before the filtering or propagate
partitioning to its operands. The optimizer evaluates all
generated equivalent plans and chooses the best based on
estimated costs as it is typically done. In a similar manner,
Lara exploits access patterns, e.g. column-wise or row-wise
data layouts, to choose physical implementations for linear
algebra operators.

15

5.2 Cost-based optimization

Another type of optimization techniques is based on the
computation of cost metrics. That means that different
rewritings of a plan are evaluated using a cost model and
it depends on the evaluation which of the rewritings will
take place. On the contrary, rule-based optimization always
triggers a rule, when conditions apply, even if the rewriting
does not improve the generated plan. Systems, such as
Tupleware and Spark, support cost-based optimization on
relational operators either at logical or at physical level,
using well-studied ideas from database optimization. The
cost model for relational operators is based on statistics of
tables that are collected periodically, e.g. number of tuples,
selectivity of columns. For example, both Tupleware and
Spark’s SQL Catalyst optimizer perform join reordering
based on data statistics, whereas the latter also chooses
implementations for join operators at the physical level by
estimating I/O operations.

A more novel area of cost-based optimization addresses
linear algebra operations. SystemML seems to be the most
advanced system in this direction. Cost-dependent rewrites
are applied on expensive operations of the logical plan, i.e.
HOP DAG, and the cost is based on a number of metrics,
including matrix dimensions, floating point operations, I/O
operations and shuffle cost, depending on each optimization
phase. Some of the first rewritings of a DAG consisting of
linear algebra operators include the removal of operators
when one of the matrices contains only zeros, the replace-
ment of row and column sums with table sums whenever
the matrix consists of a single row or column, or the removal
of indexing whenever the dimensions of the matrices are
the same. These transformations are size-dependent, as the
optimizer needs to be aware of the dimensions and the
sparsity of the input matrices in order to perform them. That
being said, there is still no cost function that is minimized/-
maximized on this phase. We can observe some of these
rewritings in the HOP plan of the code snippet in listing 12.

Listing 12: Code sample in DML
gradients = (t(features)%*%error)/m;
weights = weights − learning rate*rowSums(gradients);
predictions = features%*%weights;
error = predictions − labels;
total error[i,1] = t(error)%*%error;

The generated plan for this part is in listing 13.

Listing 13: HOP plan generated by SystemML for code in
listing 12
(171) TRead weights [13,1,1000,1000,−1] [0,0,0 −> 0MB], CP
(167) TRead features [506,13,1000,1000,−1] [0,0,0 −> 0MB], CP
(175) r(t) (167) [13,506,1000,1000,−1] [0,0,0 −> 0MB]
(170) TRead error [506,1,1000,1000,−1] [0,0,0 −> 0MB], CP
(176) ba(+*) (175,170) [13,1,1000,1000,−1] [0,0,0 −> 0MB], CP
(178) b(/) (176) [13,1,1000,1000,−1] [0,0,0 −> 0MB], CP
(238) t(−*) (171,178) [13,1,1000,1000,−1] [0,0,0 −> 0MB], CP
(183) TWrite weights (238) [13,1,1000,1000,−1] [0,0,0 −> 0MB], CP
(184) ba(+*) (167,238) [506,1,1000,1000,−1] [0,0,0 −> 0MB], CP
(174) TRead labels [506,1,1000,1000,−1] [0,0,0 −> 0MB], CP
(185) b(−) (184,174) [506,1,1000,1000,−1] [0,0,0 −> 0MB], CP
(186) TWrite error (185) [506,1,1000,1000,−1] [0,0,0 −> 0MB], CP
(168) TRead error history [200,1,1000,1000,−1] [0,0,0 −> 0MB], CP
(189) r(t) (185) [1,506,1000,1000,−1] [0,0,0 −> 0MB]
(190) ba(+*) (189,185) [1,1,1000,1000,−1] [0,0,0 −> 0MB], CP

In listing 13 after the computation of vector gradients
at HOP 178, we can observe that the unary aggregation
of row sums of gradients is removed, as the number
of columns is equal to one and this makes it the same
with multiplying with the single cell of each row. So, the
expression

weights = weights − learning\ rate*rowSums(gradients)

is transformed to just

weights = weights−learning\ rate*gradients

Another example is the expression in listing 14.

Listing 14: Code sample in DML
error = colSums(features%*%weights − labels)/nrow(features);

We can observe in the HOP plan of listing 15, that the opti-
mizer has pushed a summation over columns of features
(HOP id 128) before computing the product with weights,
in order to reduce the size of the multiplication.

Listing 15: HOP plan generated by SystemML for code in
listing 14
(92) TRead features [506,13,−1,−1,−1] [0,0,0 −> 0MB], CP
(128) ua(+C) (92) [1,13,−1,−1,−1] [0,0,0 −> 0MB], CP
(93) TRead weights [13,1,−1,−1,−1] [0,0,0 −> 0MB], CP
(133) ba(+*) (128,93) [1,1,−1,−1,−1] [0,0,0 −> 0MB], CP
(134) u(cast as scalar) (133) [0,0,0,0,−1] [0,0,0 −> 0MB]
(94) TRead labels [506,1,−1,−1,−1] [0,0,0 −> 0MB], CP
(126) ua(+RC) (94) [−1,−1,−1,−1,−1] [0,0,0 −> 0MB], CP
(127) b(−) (134,126) [0,0,−1,−1,−1] [0,0,0 −> 0MB], CP
(124) u(cast as matrix) (127) [1,1,1000,1000,−1] [0,0,0 −> 0MB]
(103) b(/) (124) [1,1,−1,−1,−1] [0,0,0 −> 0MB], CP

SystemML’s optimizer examines the dimensions of the ma-
trices involved and notes that the initial code will multiply
two matrices of size (506x13) and (13x1), whereas pushing
the summation first will result in a multiplication of size
(1x13)*(13x1). The same optimization is also applied on
labels by fully aggregating over both rows and columns
(HOP id 126), which results in executing a subtraction
between scalars instead of matrices. After these two rewrit-
ings, the initial expression is finally transformed to

error = ((colSums(features)\%*\%weights) − sum(label))/nrow(
features)

SystemML’s optimizer is able to propagate matrix sizes
to the whole program, using a bottom-up procedural anal-
ysis inside and across DAGs. Starting from read opera-
tors, for which input sizes can be inferred or are known
due to metadata, dimensions and sparsity properties are
propagated to the operators of a DAG and finally to its
result variables. Based on the semantics of linear algebra
operators, computing the output matrix size of an operator
is possible. In case of if or while conditions, the propagation
procedure takes into account whether variable sizes change
inside the loop and need to be re-propagated or whether
both if and else conditions will result to the same output
size.

Although the rewritings presented above are cost-based,
there is no search algorithm that evaluates different plans
in order to find the optimal one. However, when it comes
to matrix multiplication chains, SystemML uses dynamic
programming in order to find the multiplication order that

16

minimizes the number of operations needed to compute the
final product.

The rewritings described above can be implemented
in any system that supports linear algebra operations. In
general though, linear algebra operators are not widely
commutable and do not offer many opportunities for re-
orderings at the logical level, as it applies to relational oper-
ators. Apart from altering the order of matrix multiplication
chains, most of the rewritings at the logical level are based
on simple mathematical properties.

Cost-based optimization techniques are also applied on
physical plans of linear algebra operators. The most ad-
vanced system at this front is again SystemML, which
chooses different implementations for linear algebra opera-
tors based on cost functions. Its physical plans, LOP DAGs,
consist of the physical operators for each high-level (logical)
operator of the HOP DAG. The LOP DAG that corresponds
to the HOP DAG of listing 13 is displayed in listing 16 .
There may be implementations of LOPs for various runtime
engines (single node, MapReduce and Spark), which is
indicated by the first token of each runtime instruction in
the LOP DAG, and more than one implementations of an
operator for a specific execution engine.

The choice between single-node and distributed execu-
tion is based on memory estimates for each HOP and the
available budget of a single machine. Memory estimates
assume single-threaded execution and are computed recur-
sively from the leafs of a HOP DAG to its internal nodes
using a precise model of dense and sparse matrices. The
memory for internal HOPS is the sum of the estimates from
their child nodes, the memory for intermediate results and
the output memory of the HOP. Hence, HOPS that need
less memory than the available budget in a single machine,
will be executed locally, since local in-memory execution
is assumed to be always cheaper than distributing data
over the network. In case CP mode is not possible, the
optimizer chooses a distributed LOP implementation based
on a different cost function that takes into account I/O cost,
shuffle cost and the degree of parallelism. Shuffle cost is the
cost to redistribute data from mappers to the appropriate
reducers on a distributed framework. It involves the time
to write and read data from the file system divided by
the number of mappers and reducers. For example, in case
of a multiplication between a matrix and a small vector,
the optimizer can choose to send a copy of the vector in
every machine and perform local partial aggregations of the
results, in order to avoid shuffle costs.

In the LOP plan of listing 16 all operators are executed
on a single node. This is because memory estimates for
these operators as computed in HOP plan of listing 13
are very small and rounded to 0MB. Also, two different
physical implementations are used for the HOP of matrix
multiplication. Lines 4 and 16 use the default algorithm for
an expression of type X%*%Y, whereas the last line calls a dif-
ferent implementation named tsmm, which is suitable when
a matrix is multiplied with its transpose, i.e. t(X)%*%X, and
is used for the expression t(error)%*%error.

Listing 16: Sample LOP plan corresponding to listing 13
CP createvar mVar65 true MATRIX binaryblock 1 506 1000 1000 −1

copy

CP r' error.MATRIX.DOUBLE mVar65.MATRIX.DOUBLE 1
CP createvar mVar66 true MATRIX binaryblock 1 13 1000 1000 −1

copy
CP ba+* mVar65.MATRIX.DOUBLE features.MATRIX.DOUBLE

mVar66.MATRIX.DOUBLE 1
CP createvar mVar67 true MATRIX binaryblock 13 1 1000 1000 −1

copy
CP r' mVar66.MATRIX.DOUBLE mVar67.MATRIX.DOUBLE 1
CP createvar mVar68 true MATRIX binaryblock 13 1 1000 1000 −1

copy
CP / mVar67.MATRIX.DOUBLE 506.SCALAR.INT.true mVar68.

MATRIX.DOUBLE
CP createvar mVar69 true MATRIX binaryblock 13 1 1000 1000 −1

copy
CP −* weights.MATRIX.DOUBLE 1.0E−7.SCALAR.DOUBLE.true

mVar68.MATRIX.DOUBLE mVar69.MATRIX.DOUBLE
CP createvar mVar70 true MATRIX binaryblock 506 1 1000 1000 −1

copy
CP ba+* features.MATRIX.DOUBLE mVar69.MATRIX.DOUBLE

mVar70.MATRIX.DOUBLE 1
CP createvar mVar71 true MATRIX binaryblock 506 1 1000 1000 −1

copy
CP − mVar70.MATRIX.DOUBLE labels.MATRIX.DOUBLE mVar71.

MATRIX.DOUBLE
CP createvar mVar72 true MATRIX binaryblock 1 1 1000 1000 −1

copy
CP tsmm mVar71.MATRIX.DOUBLE mVar72.MATRIX.DOUBLE

LEFT 1

Finally, in the context of work for in-database linear
algebra [57] described in section 4.5.3, preliminary size-
dependent ideas on executing plans which involve both re-
lational and linear algebra operators more efficiently are ex-
plored. For example, when combining matrix multiplication
with join operators, an optimizer aware of the dimensions
of the involved matrices can choose a better plan. It could
choose to perform matrix multiplication before joining, in
order to reduce the size of the matrices moving up the
plan, instead of performing a series a joins and leave matrix
multiplication for the end.

5.3 Optimization and UDFs

Systems that adhere to the class of extensions of the MapRe-
duce model depend heavily on user-defined functions, as
their operators are second-order functions. These UDFs are
written in functional or imperative languages, such as Scala
or Java, and the semantics of the code is unknown. As a
result optimization of UDFs present specific challenges [70].
In this section, we describe methods proposed by Flink and
Tupleware, which analyze the code of UDFs to some extent
to identify particular types of optimization opportunities.
Spark, despite making heavy use of second-order functions,
does not provide optimization techniques for their content.

Flink uses static code analysis to determine which data
are read and written from each operator and separate them
into read and write sets. By checking whether read and
write sets overlap, we are able to know whether a reordering
between two operators would result to a semantically equiv-
alent plan. This idea is quite similar to the concurrency con-
trol techniques used in databases. So when only the read sets
of two operators overlap, reordering of them will not break
the semantics of the program. On the other hand, when read
and write sets overlap, we are not able to ensure semantic
equivalence. In case of group by operators, the optimizer
can also determine whether the cardinality of the grouping
attribute will remain unchanged after a reordering. That

17

ensures that the input size of the grouping operator will
also be the same. It is clear that this method still does not
understand the semantics of the code and as a consequence
it is conservative in the sense that it probably forbids valid
reorderings and misses optimization opportunities.

Apart from the logical phase, Flink exploits read and
write sets of UDFs in optimization of physical plans. By
knowing whether a UDF modifies a partitioning or sort-
ing key, it is possible to determine whether physical data
properties change. For example, if a grouping operator has
already partitioned data based on the same key that a join
operator will be applied on, there is no need to reshuffle
data and increase network I/O. However, this technique is
not enough to provide an accurate I/O cost for each plan
and Flink at the moment bases its cost estimations on hints
for UDF selectivity provided by the user or derived from
earlier phases.

Tupleware also introspects UDFs by examining their
LLVM intermediate representation, but focuses on other
types of information. The purpose of its analysis is to
determine vectorizability and estimate CPU and memory
requirements of the UDF code. Vectorizability achieves data
level parallelism by using the registers of a processor to
apply a single instruction on multiple data simultaneously.
CPU cycles can provide an estimation of compute time,
whereas memory bandwidth can be used to predict load
time of operands. Therefore, these two metrics can estimate
whether a problem is compute-bound or memory-bound
by comparing compute to load time. These statistics allow
Tupleware to employ an adaptive strategy that switches
between pipelining and bulk processing.

As an example consider map operators. It is common
to group consecutive maps to a single pipeline, in order
to leverage data locality. In addition to this, Tupleware can
identify which of the map UDFs are vectorizable, exploit
SIMD vectorization for them and cache intermediate results
to avoid delays. In case there is one or more vectoriz-
able UDFs at the beginning of the pipeline, Tupleware’s
optimizer can examine statistics of load time to evaluate
whether fetching UDF operands would be faster than UDF
computations. Based on this evaluation, it will then deter-
mine whether it should apply SIMD vectorization or stick
to the initial operator pipelining.

Concerning reduce operators, the construction of the
hash table can also be parallelized using SIMD vectoriza-
tion. Moreover, in case reduce is based on a single key and
the aggregation function is commutative and associative,
Tupleware again computes partial aggregates in parallel
using vectorization and combines them at the end to derive
the final result.

6 COMPARISON AND DISCUSSION

After presenting a broad range of systems for declarative
data analytics, we summarize how the described systems
align with the properties of Section 2. TileDB is excluded,
as it currently provides only storage management. Table
2 summarizes the results of this analysis. The last column
of the table concerns the scope of the systems with re-
gard to the following data science areas: data processing
(DP - relational operators and other data transformations),

machine learning (ML - linear algebra operators), convex
optimization (LP - linear programming). The term ”machine
learning” refers to operators for building ML algorithms,
not black box ML libraries. Table 3 also explains the types
of plan optimizations that are developed by each system.
We do not consider optimizations that are provided by
existing optimizers and are used as they are by the surveyed
systems, such as BUDS and MLog leveraging SimSQL’s and
Datalog’s optimizers respectively. Moreover, as described in
section 5.1, MLog supports an optimization technique that
identifies components of a program, which can be evaluated
in parallel. However, neither further details are provided
in the paper [56] describing how the synchronization of
results is achieved, nor experiments using this technique
are reported. Therefore, we cannot assume that automatic
parallelization is supported at the scale that it is by systems
like Spark and SciDB. For this reason we do not include
MLog in Table 3.

Some of the systems compared in table 2 are early
research prototypes or do not have any follow ups, so it is
understood that they may not be credible options for large-
scale development. Nevertheless, we believe that the study
of their architecture and features may benefit projects with
larger adoption, which may want to consider adding a more
declarative approach as an extra layer.

Based on these properties in table 2, we can see that
the most declarative approaches include: SciDB, MLog,
LogicBlox and the extension of SQL with linear algebra
operators. These systems provide or emulate both data
processing and commonly used operations in ML, offer
plan optimization and the programs in the languages they
support lack control flow. Moreover, user defined functions
are only necessary when a task cannot be expressed using
the primitives of the language, since operators in these
languages do not serve as second-order functions. It is im-
portant to note that SystemML, despite not fully declarative
according to the properties of the table, is a strong player
in the area as an Apache project focused on large-scale
machine learning with advanced optimization techniques
and increasing community adoption.

Regarding most declarative systems, there are still dif-
ferences in their design choices. SciDB and MLog support
an array-based data model, instead of a relational one.
LogicBlox and the extension of SQL with linear algebra
operators both work directly on relational data. The Log-
icBlox database follows the model+solver paradigm, where
models are defined as Datalog programs and the solution
is provided by convex optimization solvers, whereas an
extension of SQL would natively support linear algebra
operators, but the mathematical optimization algorithm, e.g.
gradient descent need also be coded by the user.

These last two approaches emphasize the benefits of
the relational model. Despite the limitations of relational
algebra when it comes to looping, its operators and the con-
cept of relation serve preprocessing and feature engineering
tasks very well and therefore cannot be dropped from the
ML toolkit. Based on this observation, two main directions
are forming in the area of declarative machine learning. One
direction claims that we should give up on the database
paradigm and use different platforms for machine learning
and data storage. Advocates of this direction seem to believe

18

TABLE 2: Declarativity of systems based on the seven properties

System/Language
Independence
of Data
Abstractions

DP Ops ML Ops Plan Opti-
mization

Lack of
Control
Flow

Automatic
Computation of
Solution

Limited
dependence
on UDFs

Scope

Pig Latin X X X X X DP
Jaql X X X X X DP
U-SQL X X X X X DP

Spark X X X
DP,
ML

Flink (Strato-
sphere) X X DP

DryadLINQ X X DP
Tupleware X X DP
SystemML X X X X ML
Mahout Samsara X X X ML
BUDS X X X X ML
TensorFlow X X X X ML
PyTorch X X X ML

Lara X X X X
DP,
ML

SciDB X X X X X
DP,
ML

LogicBlox X X X X X X
DP,
LP

MLog X X X X X X ML
An extension of
SQL with linear
algebra [57]

X X X X X X
DP,
ML

TABLE 3: Optimization capabilities per system

System or Lan-
guage

Relational Algebra Linear Algebra User Defined
Functions

Compiler-Based
Optimizations

Automatic
Parallelization

Pig Latin X
Jaql X X
U-SQL X
Spark X X X
Flink Strato-
sphere

X X X

DryadLINQ X
Tupleware X X X
SystemML X X
Mahout
Samsara

X

TensorFlow X
Lara X X X X
SciDB X
LogicBlox X X
An extension of
SQL with linear
algebra [57]

X X

that the current situation will become the status quo and
the idea of integrating machine learning into the database
will eventually fade away due to usability, performance and
expressivity challenges that would be not addressed in an
efficient manner. In this case however, an open question
remains: how can we get closer to a declarative specification
of machine learning algorithms when we program them in
systems that use imperative languages? Notice that none of
the systems in this category scores high in the seven proper-
ties of table 2. The other direction estimates that history will
repeat itself. As it happened with other processing needs
in the past that were ultimately integrated with database
architectures, such as stream processing or full text search,
at some point it will come down to adding a suitable set of
operators to the relational algebra or merging relational with
linear algebra, in order to provide a unified environment
for data science. Although the approaches that show high

declarativity according to our framework set a foundation
for this direction, the problem of declarative data science
and machine learning cannot be considered solved.

7 CONCLUSION

We presented an extensive survey over systems in the area
of declarative data analytics. The area can be divided to a
number of categories, each one following a different pro-
gramming model and degree of declarativity. Today, data
scientists use a hairball of these systems, as each of them fits
best different scenarios. It is thus frequent to build pipelines
of various frameworks to support all the components of a
machine learning solution. Building such pipelines involves
lots of glue code, as well as tedious ETL processes, and
requires at least a basic level of familiarity with a number of
systems and languages. As a result, those approaches are not

19

easily maintained. We argue that the challenges described
above and the solutions that will surround them, form the
driving force that will determine which of the two main
directions will prevail, either database management systems
or general-purpose ML systems operating on denormalized
data. Based on our analysis, it seems that despite early
trends in the area favouring Map-Reduce based frame-
works, the database ecosystem strikes back and proposes
more sophisticated approaches for analytic tasks than the
early black-box libraries in the same environment where
data live.

ACKNOWLEDGMENTS

We thank Panagiotis-Ioannis Betchavas for the implementa-
tion of Linear Regression using DML in section 4.4.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in 6th Symposium on Operating System Design
and Implementation (OSDI 2004), San Francisco, California, USA,
December 6-8, 2004, 2004, pp. 137–150.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Dis-
tributed data-parallel programs from sequential building blocks,”
in Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, ser. EuroSys ’07. New York, NY, USA:
ACM, 2007, pp. 59–72.

[3] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy, “Hive: A warehousing solution
over a map-reduce framework,” Proc. VLDB Endow., vol. 2, no. 2,
pp. 1626–1629, Aug. 2009.

[4] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins,
“Pig latin: A not-so-foreign language for data processing,” in
Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’08. New York, NY, USA: ACM,
2008, pp. 1099–1110.

[5] R. Chaiken, B. Jenkins, P.-r. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou, “Scope: Easy and efficient parallel pro-
cessing of massive data sets,” Proc. VLDB Endow., vol. 1, no. 2, pp.
1265–1276, Aug. 2008.

[6] F. Chollet et al. (2015) Keras. https://github.com/fchollet/keras.
[7] F. Seide and A. Agarwal, “Cntk: Microsoft’s open-source deep-

learning toolkit,” in Proceedings of the 22Nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, ser. KDD
’16. New York, NY, USA: ACM, 2016, pp. 2135–2135.

[8] S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: a next-
generation open source framework for deep learning,” in Pro-
ceedings of Workshop on Machine Learning Systems (LearningSys) in
The Twenty-ninth Annual Conference on Neural Information Processing
Systems (NIPS), 2015.

[9] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg,
R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Va-
sudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, “Tensorflow:
A system for large-scale machine learning,” in 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16), 2016, pp. 265–283.

[10] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differ-
entiation in pytorch,” in NIPS-W, 2017.

[11] C. De Sa, A. Ratner, C. Ré, J. Shin, F. Wang, S. Wu, and C. Zhang,
“Deepdive: Declarative knowledge base construction,” SIGMOD
Rec., vol. 45, no. 1, pp. 60–67, Jun. 2016.

[12] Tensorflow probability. https://www.tensorflow.org/probability/overview.
[13] Pyro. https://pyro.ai/.
[14] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and

M. I. Jordan, “Mlbase: A distributed machine-learning system.” in
CIDR. www.cidrdb.org, 2013.

[15] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-
WEKA: Combined selection and hyperparameter optimization of
classification algorithms,” in Proc. of KDD-2013, 2013, pp. 847–855.

[16] A. Kumar, R. McCann, J. Naughton, and J. M. Patel, “Model
selection management systems: The next frontier of advanced
analytics,” SIGMOD Rec., vol. 44, no. 4, pp. 17–22, May 2016.

[17] M. Boehm, A. V. Evfimievski, N. Pansare, and B. Reinwald,
“Declarative machine learning - A classification of basic properties
and types,” CoRR, vol. abs/1605.05826, 2016.

[18] S. Chaudhuri and K. Shim, “Optimization of queries with user-
defined predicates,” ACM Trans. Database Syst., vol. 24, no. 2, pp.
177–228, Jun. 1999.

[19] F. Hueske, M. Peters, M. Sax, A. Rheinländer, R. Bergmann,
A. Krettek, and K. Tzoumas, “Opening the black boxes in data
flow optimization,” PVLDB, vol. 5, no. 11, pp. 1256–1267, 2012.

[20] F. Hueske, M. Peters, A. Krettek, M. Ringwald, K. Tzoumas,
V. Markl, and J. Freytag, “Peeking into the optimization of data
flow programs with mapreduce-style udfs,” in 29th IEEE Interna-
tional Conference on Data Engineering, ICDE 2013, Brisbane, Australia,
April 8-12, 2013, 2013, pp. 1292–1295.

[21] A. Thomas and A. Kumar, “A comparative evaluation of systems
for scalable linear algebra-based analytics,” Proc. VLDB Endow.,
vol. 11, no. 13, pp. 2168–2182, Sep. 2018. [Online]. Available:
https://doi.org/10.14778/3275366.3284963

[22] G. Graefe, “Query evaluation techniques for large databases,”
ACM Comput. Surv., vol. 25, no. 2, pp. 73–169, Jun. 1993.

[23] ——, “Volcano— an extensible and parallel query evaluation
system,” IEEE Trans. on Knowl. and Data Eng., vol. 6, no. 1, pp.
120–135, Feb. 1994.

[24] M. T. zsu and P. Valduriez, Principles of Distributed Database Sys-
tems, 3rd ed. Springer Publishing Company, Incorporated, 2011.

[25] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J.
Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar, “Mllib: Machine
learning in apache spark,” J. Mach. Learn. Res., vol. 17, no. 1, pp.
1235–1241, Jan. 2016.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[27] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: An update,”
SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 10–18, Nov. 2009.

[28] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark: Cluster computing with working sets,” in Proceedings
of the 2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
10–10.

[29] Apache mahout. http://mahout.apache.org/.
[30] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin,

A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li, and A. Kumar,
“The madlib analytics library: Or mad skills, the sql,” Proc. VLDB
Endow., vol. 5, no. 12, pp. 1700–1711, Aug. 2012.

[31] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Y. Eltabakh,
C. Kanne, F. Özcan, and E. J. Shekita, “Jaql: A scripting language
for large scale semistructured data analysis,” PVLDB, vol. 4, no. 12,
pp. 1272–1283, 2011.

[32] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske,
A. Heise, O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann,
M. Peters, A. Rheinländer, M. J. Sax, S. Schelter, M. Höger,
K. Tzoumas, and D. Warneke, “The stratosphere platform for big
data analytics,” The VLDB Journal, vol. 23, no. 6, pp. 939–964, Dec.
2014.

[33] U-sql. http://usql.io/.
[34] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke,

“Nephele/pacts: A programming model and execution frame-
work for web-scale analytical processing,” in Proceedings of the 1st
ACM Symposium on Cloud Computing, ser. SoCC ’10. New York,
NY, USA: ACM, 2010, pp. 119–130.

[35] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, U. Çetintemel, and
S. B. Zdonik, “Tupleware: ”big” data, big analytics, small clusters.”
in CIDR, 2015.

[36] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda,
and J. Currey, “Dryadlinq: A system for general-purpose dis-
tributed data-parallel computing using a high-level language,”
in Proceedings of the 8th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’08. Berkeley, CA, USA:
USENIX Association, 2008, pp. 1–14.

[37] Apache flink. https://flink.apache.org/.

20

[38] C. Doulkeridis and K. Nørvåg, “A survey of large-scale analytical
query processing in mapreduce,” The VLDB Journal, vol. 23, no. 3,
pp. 355–380, Jun. 2014.

[39] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop: Efficient
iterative data processing on large clusters,” in 36th International
Conference on Very Large Data Bases, Singapore, September 14–16,
2010.

[40] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox, “Twister: A runtime for iterative mapreduce,” in Proceed-
ings of the 19th ACM International Symposium on High Performance
Distributed Computing, ser. HPDC ’10. New York, NY, USA: ACM,
2010, pp. 810–818.

[41] Spark sql. https://spark.apache.org/sql/.
[42] Flink table api. https://ci.apache.org/projects/flink/flink-docs-

release-1.8/dev/table/index.html.
[43] Spark dataframe api. https://spark.apache.org/docs/latest/sql-

programming-guide.html.
[44] A. Alexandrov, A. Katsifodimos, G. Krastev, and V. Markl, “Im-

plicit parallelism through deep language embedding,” SIGMOD
Rec., vol. 45, no. 1, pp. 51–58, Jun. 2016.

[45] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sind-
hwani, S. Tatikonda, Y. Tian, and S. Vaithyanathan, “Systemml:
Declarative machine learning on mapreduce,” in Proceedings of the
2011 IEEE 27th International Conference on Data Engineering, ser.
ICDE ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 231–242.

[46] Z. J. Gao, S. Luo, L. L. Perez, and C. Jermaine, “The buds language
for distributed bayesian machine learning,” in Proceedings of the
2017 ACM International Conference on Management of Data, ser.
SIGMOD ’17. New York, NY, USA: ACM, 2017, pp. 961–976.

[47] E. R. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan, J. E.
Gonzalez, M. J. Franklin, M. I. Jordan, and T. Kraska, “Mli: An api
for distributed machine learning.” in ICDM, H. Xiong, G. Karypis,
B. M. Thuraisingham, D. J. Cook, and X. Wu, Eds. IEEE Computer
Society, 2013, pp. 1187–1192.

[48] A. Kunft, A. Katsifodimos, S. Schelter, S. Breß, T. Rabl, and
V. Markl, “An intermediate representation for optimizing machine
learning pipelines,” in Proceedings of the 45th International Confer-
ence on Very Large Data Bases, VLDB 2019, August 26-30, 2019, Los
Angeles, California, USA, 2019.

[49] E. R. Sparks, S. Venkataraman, T. Kaftan, M. J. Franklin, and
B. Recht, “Keystoneml: Optimizing pipelines for large-scale ad-
vanced analytics,” in 33rd IEEE International Conference on Data
Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017,
2017, pp. 535–546.

[50] M. Stonebraker, P. Brown, A. Poliakov, and S. Raman, “The archi-
tecture of scidb,” in Proceedings of the 23rd International Conference
on Scientific and Statistical Database Management, ser. SSDBM’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 1–16.

[51] S. Papadopoulos, K. Datta, S. Madden, and T. Mattson, “The tiledb
array data storage manager,” Proc. VLDB Endow., vol. 10, no. 4, pp.
349–360, Nov. 2016.

[52] E. Soroush, M. Balazinska, S. Krughoff, and A. Connolly, “Efficient
iterative processing in the scidb parallel array engine,” in Proceed-
ings of the 27th International Conference on Scientific and Statistical
Database Management, ser. SSDBM ’15. New York, NY, USA: ACM,
2015, pp. 39:1–39:6.

[53] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu,
E. Pasalic, T. L. Veldhuizen, and G. Washburn, “Design and
implementation of the logicblox system,” in Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’15. New York, NY, USA: ACM, 2015, pp. 1371–1382.

[54] M. Kifer and Y. A. Liu, Eds., Declarative Logic Programming: Theory,
Systems, and Applications. New York, NY, USA: Association for
Computing Machinery and Morgan & Claypool, 2018.

[55] N. Makrynioti, N. Vasiloglou, E. Pasalic, and V. Vassalos, “Mod-
elling machine learning algorithms on relational data with data-
log,” in Proceedings of the Second Workshop on Data Management for
End-To-End Machine Learning, ser. DEEM’18. New York, NY, USA:
ACM, 2018, pp. 5:1–5:4.

[56] X. Li, B. Cui, Y. Chen, W. Wu, and C. Zhang, “Mlog: Towards
declarative in-database machine learning,” Proc. VLDB Endow.,
vol. 10, no. 12, pp. 1933–1936, Aug. 2017.

[57] S. Luo, Z. J. Gao, M. N. Gubanov, L. L. Perez, and C. M. Jermaine,
“Scalable linear algebra on a relational database system,” in 33rd
IEEE International Conference on Data Engineering, ICDE 2017, San
Diego, CA, USA, April 19-22, 2017, 2017, pp. 523–534.

[58] J. H. Davenport, Y. Siret, and E. Tournier, Computer Algebra: Systems
and Algorithms for Algebraic Computation. London, UK, UK:
Academic Press Ltd., 1988.

[59] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
“Automatic differentiation in machine learning: a survey,” Journal
of Machine Learning Research, vol. 18, pp. 153:1–153:43, 2017.

[60] Matlab. https://www.mathworks.com/products/matlab.html/.
[61] Mathematica,. https://www.wolfram.com/mathematica/.
[62] Z. Cai, Z. Vagena, L. Perez, S. Arumugam, P. J. Haas, and

C. Jermaine, “Simulation of database-valued markov chains using
simsql,” in Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’13. New York,
NY, USA: ACM, 2013, pp. 637–648.

[63] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia,
“Spark sql: Relational data processing in spark,” in Proceedings of
the 2015 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’15. New York, NY, USA: ACM, 2015, pp.
1383–1394.

[64] A. Kumar, J. Naughton, and J. M. Patel, “Learning generalized
linear models over normalized data,” in Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’15. New York, NY, USA: ACM, 2015, pp. 1969–1984.

[65] M. Schleich, D. Olteanu, and R. Ciucanu, “Learning linear re-
gression models over factorized joins,” in Proceedings of the 2016
International Conference on Management of Data, ser. SIGMOD ’16.
New York, NY, USA: ACM, 2016, pp. 3–18.

[66] M. Abo Khamis, H. Q. Ngo, X. Nguyen, D. Olteanu, and M. Schle-
ich, “In-database learning with sparse tensors,” in Proceedings of
the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, ser. SIGMOD/PODS ’18. New York, NY, USA:
ACM, 2018, pp. 325–340.

[67] L. Chen, A. Kumar, J. Naughton, and J. M. Patel, “Towards linear
algebra over normalized data,” Proc. VLDB Endow., vol. 10, no. 11,
pp. 1214–1225, Aug. 2017.

[68] J. Seib and G. Lausen, “Parallelizing datalog programs by general-
ized pivoting,” in Proceedings of the Tenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, ser. PODS ’91.
New York, NY, USA: ACM, 1991, pp. 241–251.

[69] J. Zhou, P. Larson, and R. Chaiken, “Incorporating partitioning
and parallel plans into the SCOPE optimizer,” in Proceedings of the
26th International Conference on Data Engineering, ICDE 2010, March
1-6, 2010, Long Beach, California, USA, 2010, pp. 1060–1071.

[70] A. Rheinländer, U. Leser, and G. Graefe, “Optimization of com-
plex dataflows with user-defined functions,” ACM Comput. Surv.,
vol. 50, no. 3, pp. 38:1–38:39, May 2017.

Nantia Makrynioti is a PhD candidate in the
Department of Informatics at the Athens Univer-
sity of Economics and Business. Her research
interests lie in the intersection of database and
machine learning systems. More specifically, her
work focuses on integrating machine learning
functionality with data query languages used in
relational databases. She holds a BSc in Com-
puter Science from the University of Ioannina
and a MSc in Information Systems from her cur-
rent University.

Vasilis Vassalos is a Professor in the Depart-
ment of Informatics at the Athens University of
Economics and Business. He has been working
on data science challenges, including data inte-
gration, data cleaning, query optimization, and
heterogeneous data processing since 1996. He
has published more than 60 research papers in
international conferences and journals and holds
2 US patents for work on information integration.
His current work is on ML systems and biomed-
ical and clinical data integration.

