
Int. J. Big Data Intelligence, Vol. 4, No. 1, 2017 3

Copyright © 2017 Inderscience Enterprises Ltd.

PaloPro: a platform for knowledge extraction from
big social data and the news

Nantia Makrynioti*
Department of Informatics,
Athens University of Economics and Business, Greece
Email: makriniotik@aueb.gr
*Corresponding author

Andreas Grivas
Institute of Informatics and Telecommunications,
NCSR ‘Demokritos’, Greece
Email: andreasgrv@gmail.com

Christos Sardianos
Department of Informatics and Telematics,
Harokopio University of Athens, Greece
Email: sardianos@hua.gr

Nikos Tsirakis
Palo Services Ltd.,
Corinthia, Greece
Email: nt@paloservices.com

Iraklis Varlamis
Department of Informatics and Telematics,
Harokopio University of Athens, Greece
Email: varlamis@hua.gr

Vasilis Vassalos
Department of Informatics,
Athens University of Economics and Business, Greece
Email: vassalos@aueb.gr

Vassilis Poulopoulos and Panagiotis Tsantilas
Palo Services Ltd.,
Corinthia, Greece
Email: pv@paloservices.com
Email: pt@paloservices.com

Abstract: PaloPro is a platform that aggregates textual content from social media and news sites
in different languages, analyses them using a series of text mining algorithms and provides
advanced analytics to journalists and social media marketers. The platform capitalises on the
abundance of social media sources and the information they provide for persons, products and
events. In order to handle huge amounts of multilingual data that are collected continuously, we
have adopted language independent techniques at all levels and from an engineering point
of view, we have designed a system that takes advantage of parallel distributed computing
technologies and cloud infrastructure. Different systems handle data aggregation, data processing
and knowledge extraction and others deal with the integration and visualisation of knowledge. In
this paper, we focus on two important text mining tasks, named entity recognition from texts and
sentiment analysis to extract the sentiment associated with the corresponding identified entities.

4 N. Makrynioti et al.

Keywords: text mining; social media analysis; named entity recognition; NER; sentiment
analysis; opinion mining.

Reference to this paper should be made as follows: Makrynioti, N., Grivas, A., Sardianos, C.,
Tsirakis, N., Varlamis, I., Vassalos, V., Poulopoulos, V. and Tsantilas, P. (2017) ‘PaloPro:
a platform for knowledge extraction from big social data and the news’, Int. J. Big Data
Intelligence, Vol. 4, No. 1, pp.3–22.

Biographical notes: Nantia Makrynioti is currently a PhD student at the Department of
Informatics of Athens University of Economics and Business. She received her MSc in
Information Systems from the same university (2013). Prior to that, she studied computer science
at the Department of Computer Science of the University of Ioannina (nowadays, Department of
Computer Science and Engineering). Her research interests lie in the areas of sentiment analysis,
distributed machine learning and large scale analytics, as well as the application of machine
learning in query optimisation.

Andreas Grivas received his BSc degree from Harokopio University of Athens, Department of
Informatics and Telematics in 2014. His thesis was on the problem of text alignment using string
similarity extracted from synonym graphs. He enjoys applied machine learning and at the time of
writing has worked on named entity recognition, relation extraction and author profiling. He is
currently a member of the PerSoNA group at NCSR Demokritos, Greece.

Christos Sardianos holds a Bachelor in Electronic Engineering and a Master of Science in
Informatics and Telematics. Currently, he is a Research Associate and a PhD candidate in the
research area of ‘knowledge extraction from large scale social networks’, under the supervision
of Prof. Iraklis Varlamis, at the Department of Informatics and Telematics at Harokopio
University of Athens. His main topics of interest are data mining, big data, recommender
systems, social network analysis and mining, big graph analysis, business intelligence, databases,
etc.

Nikos Tsirakis graduated from the Computer Engineering and Informatics Department,
University of Patras, Greece in 2004 and then graduated Masters program ‘Science and
Technology of Computers’ by 2006 in the same department. He received his PhD in Computer
Science from the Department of Computer Engineering and Informatics of the University of
Patras, Greece, in 2010. His research interests are focused in information retrieval, design and
analysis of data mining algorithms and applications (mainly for huge data manipulation ex. data
bases, data streams, XML data), social networks, hypertext modelling and searching, software
quality assessment, and finally, web technologies. Currently, he is technical leader in Palo
Services, a company that provides news and social media monitoring services in Greece, Serbia,
Romania, Cyprus and Turkey.

Iraklis Varlamis is an Assistant Professor at the Department of Informatics and Telematics of
Harokopio University of Athens. He received his PhD in Computer Science from Athens
University of Economics and Business, Greece, and his MSc in Information Systems Engineering
from UMIST UK. His research interests vary from data-mining and the use of semantics in web
mining to social network analytics and knowledge extraction from social media and the news.
He has published several articles in international journals and conferences, concerning web
document clustering, the use of semantics in web link analysis and web usage mining, word
sense disambiguation using thesauruses, etc. He holds a patent from the Greek Patent Office for a
system that thematically groups web documents using content and links. More information is
available at http://www.dit.hua.gr/~varlamis.

Vasilis Vassalos is an Associate Professor at the Department of Informatics of the Athens
University of Economics and Business. Prior to that, he was an Assistant Professor at the
Department of Information Systems in the Stern School of Business of NYU (1999–2003), and at
AUEB (2003–2009). He has published more than 50 papers in international peer-reviewed
journals and conferences. He holds two US patents for work on information integration, and
regularly serves on the program committees of the major conferences in databases, and as a
reviewer for the major journals. He was a co-founder of Enosys Software, a successful innovative
startup company in enterprise information integration (acquired by BEA systems in 2003).
Ηe was a Visiting Professor at UCSD and a Marie Curie Outgoing International Fellow in
2007–2008, and a Visiting Professor at EPFL in 2013. He is currently a PI of the FET-Flagship
Human Brain Project, working on medical data integration.

Vassilis Poulopoulos obtained his diploma from Computer Engineer and Informatics Department
of the University of Patras in 2005, and in 2007, he completed his MSc degree. In 2010, he
obtained his PhD degree by creating an innovative platform for multi-lingual worldwide article
collection including data mining, data analysis, text extraction, text categorisation, text

 PaloPro: a platform for knowledge extraction from big social data and the news 5

summarisation and web personalisation. His basic fields of interest include: data mining, web
technologies, web data integration, dynamic processing of web content, information extraction
(from web content), web content summarisation, web content categorisation, website
construction, web personalisation, OLPC, code integration, and databases. He has more than
35 publications in international journals, conferences and encyclopedias, and he obtained the best
paper award twice. Currently, he is the Research and Development Director of Palo Services a
company that provides news and social media monitoring services in Greece, Serbia, Romania,
Cyprus and Turkey.

Panagiotis Tsantilas received his degree in Physics and his MSc in Computer Science and
Business Administration at the University of Glasgow. His articles have been published in
several Greek magazines and newspapers, and in 1995, he published his first book. He is the
founder and CEO of palo LTD, which runs palo.gr, PaloPro, http://www.palo.rs, palo.com.tr,
palo.com.cy and palo.ro. Palo.gr is the leading news search engine in Greece already holding two
awards distinctions in e-volution awards 2013 and in Ermis awards 2012. PaloPro awarded the
evolution awards 2014 for the innovative technology used in managing the corporate reputation
online.

1 Introduction
The enormous advances in social media and their power to
reflect and influence public opinion made them a domain of
great interest for marketeers, communication specialists,
journalists and entrepreneurs who want to invest in
knowledge extraction from them. In this content-rich
environment people report or comment on individuals,
brands, products, services, etc. by providing references to
named entities, polarised opinions about them and ratings
about different aspects of the same entity. This huge amount
of information is mainly unstructured text addressing human
readers and hence, the only way to extract useful knowledge
from it is by using natural language processing (NLP)
techniques.

Despite the recent advances in NLP research that
led to producing artificially intelligent behaviours,
e.g., Google, IBM’s Watson, and Apple’s Siri, there are still
many challenges to be faced in order to allow knowledge
extraction from social media content to scale to big data.
Popular NLP algorithms are tested for their performance in
small-sized, properly curated corpora and have not been
evaluated their ability to handle abundant social media
content. Existing text mining and text processing solutions
are tuned and tested only for English and a few more
popular languages, but can hardly adapt to any language,
especially languages with minimum linguistic resources.
Finally, NLP researchers face the challenge to jump from
the syntactic to the semantics curve (Cambria and White,
2014) in text representation and analysis.

Big players from the web and databases domains invest
in social media analytics with generic frameworks and
platforms (e.g., IBM social media analytics) that emphasise
on the analytics part but do not focus on text mining, or with
extensions of their existing platforms (e.g., Google news
lab and Google analytics) that incorporate content from
specific social media using associate data hubs and plugins
(e.g., Google’s social data hub). Social media and news
platforms on the other side, provide comprehensive
social media data and libraries of tools for analytics
(e.g., Thomson Reuters Machine Readable News,

Radian 6, Lexalytics, Synthesio). They use Twitter,
Facebook and other social media APIs to collect data in
streams and provide commercial archives/feeds and
associated analytics. Finally, social media monitoring
tools such as Brandwatch (http://www.brandwatch.com),
Sysomos (http://www.sysomos.com/), Trackur (http://www.
trackur.com/) and Engagor (https://engagor.com/) focus on
the monitoring of popular social media, target central
European and US markets and their primary users are
market analysts with good technological background, since
they offer complex visualisation interfaces which are
intended to be used by experienced users.

In this dynamic environment, we have developed a
flexible infrastructure, which allows to quickly expand to
new markets, to collect, analyse and visualise social media
pulse about companies and products. The company behind
PaloPro platform was founded in Greece, in 2008 and
launched the first news search engine for Greece, which
offers news clustering and news summarisation services. At
the end of 2012 the company launched an innovative
platform for monitoring, measuring and analysing all web
mentions of a company, brand, person or product that was
introduced in the Greek market. As part of its expansion
strategy, the company has already launched the platform in
Greece, Serbia, Cyprus, Romania and Turkey since it targets
the market of South Eastern Europe where the competition
is not so mature and the technological challenges, due to
multi-linguality and content size are even harder. The
platform uses a unique crawling and data analytics
mechanism, which can be quickly adapted to any new
language thus allowing to expand to more EU countries At
that point of expansion, PaloPro platform will have a
unique advantage against competitors, which will be the
pan-European market coverage.

As presented in Figure 1, the crawler module is able to
collect a large number of data which is estimated at 1,000
articles per minute during the rush hours leading to an
increase of 2.5 Gb per month of compressed data. The data
in absolute numbers are more than ten million records per
month from all the possible data sources while as it is
obvious most of them derive from twitter.

6 N. Makrynioti et al.

Figure 1 Statistics on data collected within a year (July 2014–June 2015), (a) number of data collected per type
(b) data distribution percentage per type (see online version for colours)

 (a) (b)

Social media analytics involves a three-stage process:
capture, understand, and present (Fan and Gordon, 2014). In
the capture phase, a crawling engine is responsible for
monitoring or ‘listening’ to various social media sources,
archiving relevant data and extracting useful metadata.
Since the collected data are not useful in their entirety, the
understand phase is responsible for selecting relevant data,
removing noisy and low quality data, and analysing the
collected data using NLP and data mining techniques. The
last phase (present) is responsible for displaying the
findings of phase 2 to the end user in the form of dynamic
reports. In this article we focus on certain aspects of the
second and third phase. More specifically, we present our
language agnostic solution for the recognition of named
entities and the detection of opinion polarity about these
entities. We present the pipeline we developed and provide
initial evidence on its performance against news and social
media post streams. In addition, we present the architecture
that supports the analytics dashboard, which allows us to
develop real time analysis components based on predefined
templates and content dynamically collected from social
media.

The advantages of the proposed architecture can be
summarised in the following:

• a language agnostic solution for named entity
recognition (NER) and sentiment analytics, which is
based on machine learning techniques and a
combination of automatically annotated corpora,
manual annotations and crowdsourced annotated data
(such as Wikipedia and DBpedia)

• a set of tools for automatic training-corpus creation and
model training and a set of annotation tools that allow
the fine tuning of our NER and opinion mining models

• a methodology, which has been tested against different
language corpora comprising both formal (e.g., news
articles) and informal texts (e.g., tweets and blog posts)

• a modular and multithreaded pipeline, which can easily
take advantage of all available resources and perform
on a cloud infrastructure.

In Section 2 that follows, we present an overview of related
research works on NER and sentiment analysis (SA), which
are the main social media analytics tasks presented in this
work. In Section 3 we present the overall architecture of the
platform and in Section 4 we provide the pipeline and main
implementation details of the NER and SA modules.
Section 5 performs a first evaluation of the two modules in
terms of accuracy and Section 6 describes the challenges
text analytics systems face. Finally, Section 7 concludes the
paper.

2 Related work
2.1 Named entity recognition
The term NER refers to the task of recognising information
units like persons, companies, organisations and locations
and identifying references to these entities in structured or
unstructured texts such as news articles, social media posts,
comments, etc.

During the last 25 years, NER has attracted great
research focus and a lot of work has been devoted to the
analysis of English texts. Another large proportion of work
addresses multilingualism problems in the field of NER. In
this context, apart from English, languages such as German,
Spanish, Dutch, Italian, Japanese, Chinese and French have
been well studied. Moreover, many other languages
(including Balkan languages) received some attention, such
as Greek, Bulgarian, Catalan, Danish, Romanian, Russian
and Turkish. One main approach for addressing NER is
supervised learning, an approach wherein a system is
trained on a corpus of annotated texts with intent to extract
rules that maximise the probability of correctly identifying
named entities and distinguishing between their different
types in unseen texts.

A lot of multilingual or language agnostic NER
approaches have been presented in the CoNLL-2003
shared task for language-independent NER (Sang and
De Meulder, 2003), where the training dataset contained
both English and German texts and the challenge was
to label entities in untagged texts in both languages
(test dataset). All the systems developed for the

 PaloPro: a platform for knowledge extraction from big social data and the news 7

CoNLL-2003 shared task used a wide range of machine
learning techniques, such as maximum entropy models,
hidden Markov models, AdaBoost.MH, support vector
machines, conditional random fields (CRFs) and memory
based models. Florian et al. (2003) tried to combine the
results of four systems and reported that the robust risk
minimisation model is the best option. According to this
algorithm, the model was estimated on training data, by
selecting the optimum class (entity type) for each word
based on the words that appear in a window around the
target word and a risk function which must be minimised
for the selected class. One participant used the output of
externally trained NER systems, though the rest of the
systems attempted to use information from gazetteers and
untagged data.

Johannessen et al. (2005) described a work on NER for
Scandinavian languages (Norwegian, Swedish, and Danish).
During their research project, named Nomen Nescio, they
used rule-based and statistical methods to develop named
entity recognisers. To develop the six different NER
systems that form the NN project, they used rule-based
methods based on constraint grammars, as well as shallow
parsing with context sensitive finite-state grammars,
OpenNLP as a named entity recogniser based on maximum
entropy, TiMBL as a memory-based learning mechanism
and gazetteers. In order to handle multi-membered names,
they used pattern matching, lexicons and context rules.

An interesting approach was proposed by Szarvas et al.
(2006) who introduced a multilingual NER system that
identifies and classifies named entities in the Hungarian and
English languages by applying AdaBoost.M1 and C4.5
decision tree learning algorithm. Essentially, they handled
the NER problem as a classification of separate tokens
taking into account the relationship between consecutive
words as well using a window of appropriate size. They
used a pre-annotated corpus of business news articles with
an inter-annotator agreement rate of 99.8%.

Another interesting approach for annotating large
corpora with NER tags is proposed by Richman and
Schone (2008) who utilised the multilingual characteristics
of Wikipedia in order to create a NER system that
requires minimal human intervention. The proposed system
identified words and phrases within the text that were
potential entities, by using Wikipedia links. With the use of
category links and/or inter-article links they categorised the
entities found in one of the entity categories. For
categorising non-English terms that had an entry in its
language’s Wikipedia, they proposed two techniques: first,
the title of an associated English language article is found
by searching for a Wikipedia link beginning with ‘en:’. If
such a title was found, then the English article was
categorised and the assumption that the non-English title
was of the same type as well was made. In the opposite case
the category information and their English equivalents were
used to decide.

Part of the limited research on NER for Balkan
languages is a preliminary investigation for the Turkish
language by Celikkaya et al. (2013). Their research

focused on NER in Turkish texts from different domains
(twitter, forums and speech-to-text). The proposed system
tokenises the data and then creates training/testing
instances using the features extracted from an automatic
morphological analysis process. The features employed are
the stems of the tokens, their main POS-tags, the case
marker and the availability of the proper noun tag. In order
to deal with spelling errors, they created a text normaliser
that pre-processes the input texts. The CRFs algorithm they
use, combines hidden Markov models, stochastic grammars
and maximum entropy Markov models. Initial results were
promising but also uncovered the difficulty of NER in real
(structured and unstructured) data and in Turkish and
Balkan languages in general.

Apart from modifying or extending methods that
worked well in English to other languages, a significant
amount of effort has been invested in extending NER
systems to work on different types of text. Most systems
were initially trained on corpora containing structured texts,
where many NLP problems have already been solved
manually [e.g., Stanford NER (Finkel et al., 2005) has been
trained on the CoNLL-2003 corpus comprising of formal
texts, where sentence splitting and tokenisation has been
carried out by human annotators].

However, the rise of social media has brought forward a
gargantuan amount of small snippets of casual noisy text
such as Twitter posts and short messages. In this novel
domain, systems trained on news articles and other types of
structured text display an important drop in accuracy (Ritter
et al., 2011). This drop can be attributed to the fact that
important distinguishing features of named entities in
formal texts, are not credible discriminating factors in
informal texts. For example, capital letters in tweets are
often used for emphasis and do not denote entities with the
same probability as in formal texts. In order to tackle the
problem of texts with informal language, several NER
extensions have been proposed, for tweets (Li et al., 2012;
Ritter et al., 2011; Locke, 2009; Liu and Zhou, 2013;
Liu et al., 2012), e-mails (Minkov et al., 2005), etc.

2.2 Entity level SA
SA is defined as the task of classifying texts into categories
depending on whether they express positive or negative
sentiment, or whether they enclose no emotion at all. It has
attracted considerable attention in recent years due to its
direct applicability in real-world businesses, such as brand
monitoring or prediction of election results.

Researchers study the task at different levels of
granularity, e.g., document level (Pang et al., 2002) or
sentence level (Wiebe and Riloff, 2005; Wilson et al.,
2005), or for different kinds of text (Barbosa and Feng,
2010; Hu et al., 2013; Boiy and Moens, 2009), e.g., tweets,
movie reviews or forum posts. There are also studies in
other languages apart from English (Boiy and Moens, 2009;
Zhao et al., 2012; Atteveldt et al., 2008; Abbasi et al., 2008;
Abdul-Mageed et al., 2011). Current approaches for SA fall
under two main categories. The first category uses
supervised machine learning and trains classifiers based on

8 N. Makrynioti et al.

features extracted from text (Engonopoulos et al., 2011;
Mohammad et al., 2013; Pak and Paroubek, 2010; Socher
et al., 2013). Then, the trained models predict sentiment
classes for unseen text data. Supervised machine learning
algorithms (e.g., support vector machines, naive Bayes
and maximum entropy) have been proven effective for
sentiment classification, but need a considerable amount
of manually annotated training data. In unsupervised
approaches sentiment lexicons (Hu et al., 2013; Turney,
2002) are created or used in order to determine the
sentiment of a text. They use a scoring scheme that
considers the number of subjective words in the text and
their polarity strength. These methods usually need minimal
human effort, but are either only based on words included in
lexicons and do not take into account the position of a word,
or they need linguistic resources, such as WordNet, which
may be language-dependent.

Concerning SA at the entity level, we present in this
section a number of proposed methods. ELS (Engonopoulos
et al., 2011) is a method for entity-level sentiment
classification, which uses CRFs to identify the sentiment of
each word in a document and then determine the sentiment
for each entity, based on where it appears in the text. The
method aims at a fine-grained sentiment classification at the
segment level and it takes into account the position of the
words in text rather than only their appearance. Given that a
sentence may mention more than one entities, a segment is
considered a part of a sentence that mentions a single entity.
The authors consider the entities mentioned in text and the
corresponding segment known. Godbole et al. (2007) assign
positive and negative opinions to entities with the use of
sentiment lexicons, which are created by small seed lists
and expanded through WordNet synonyms and antonyms.
The authors assume cooccurence of an entity and a
sentiment word in the same sentence to mean that the
sentiment is associated with that entity. The prototype
system by Nasukawa and Yi (2003) assigns sentiment
expressions to subjects of interest, which may be entities as
well, and classify the polarity of these expressions as
positive/negative. Thus, the proposed method operates at the
level of text fragment including a subject and not at the
document level. The sentiment expressions associated with
a subject are recognised with the use of a dictionary of
sentiment expressions. Sentiment expressions consist of
subjective words (positive/negative), part-of-speech tags of
these words and a few syntactic patterns determining the
subject and the object of the expression. Hence, the
dictionary includes such sentiment expression patterns and
the authors attempt to match these patterns with new text
segments.

Aspect SA is quite similar to SA at the entity level as it
aims to assign a sentiment class to a specific target, even if
this is a product feature. Hu and Liu (2004) propose a
method for identifying product features in product reviews
and then classifying opinion sentences about them into
positive and negative. They define opinion sentences as the
sentences that contain one or more product features and one
or more opinion words. Opinion words are adjectives near
the identified product features. To classify the polarity of
these adjectives into positive and negative, the method uses
a small seed list of words and WordNet. The seed list
consists of known positive/negative words, whereas
WordNet is used to provide synonyms and antonyms of
words. The polarity of an entire opinion sentence is
determined by the polarities of its opinion words. Popescu
and Etzioni (2005) present OPINE, a system that also
extracts product features from product reviews, recognises
opinion phrases concerning these features and evaluates the
polarity of the phrases as positive or negative. In order to
identify the beginning of opinion phrases in sentences
where product features are found, the authors apply
extraction rules based on syntactic dependencies. The
polarity of the identified opinion phrases is determined
through a relaxation labelling technique that finds the
semantic orientation of words in the context of given
product features and sentences. A paper by Blair-
Goldensohn et al. (2008) aims at recognising aspects of
services, e.g., for restaurants or hotels, and then
summarising the positive/negative sentiments expressed
about these aspects. So the task of the paper is divided into
three subtasks:

1 identification of subjective sentences and classification
of these sentences as positive/negative

2 identification of aspects of services

3 summarisation of opinions for the aspects of the
service.

The first subtask combines both the creation of a sentiment
lexicon based on basic seed lists as well as
synonyms/antonyms of WordNet, and the training of a
Maximum Entropy classifier with features based on the
aforementioned lexicon and the overall review rating
provided by the user.

3 System design
The architecture of the platform (see Figure 2) consists of a
set of mechanisms that implement the whole text processing
pipeline starting from data fetching from the distributed
sources, storage, summarisation and analysis of textual data
and finally synthesis and representation of the extracted
knowledge back to the end user.

 PaloPro: a platform for knowledge extraction from big social data and the news 9

Figure 2 Platform architecture (see online version for colours)

On the bottom layer of this architecture, we have the data
acquisition modules. A large number of distributed crawlers
accesses and processes content from different type of
sources (news sites, blog feeds, social media APIs, etc.) in
order to collect the desired data (comments, article content,
etc.). The crawlers differ from source to source, because the
data sources can vary from social media to news portals and
forums. For example, data acquisition from social media
(streaming data) is mainly done using the ‘streams’ they
provide via their APIs. A similar strategy is followed for
feeds and channels of cloud based CMS or blog services
(e.g., blogspot) that helps us get a large amount of ‘clean’
data from web sources. In the case of news sites and portals,
data fetching is performed by a complex system of hybrid
web crawlers. The news crawlers combine manually defined
parsing rules and automatic extraction of page wrappers
(data extraction rules), which allow quick collection of
specific content (e.g., article title, body, media) from
multiple sources (Varlamis et al., 2014) (observation data).
Finally, we analyse information concerning how our users
interact with the collected content and services (interaction
data), and deliver personalisation services and advanced
analytics and alerts to the users. Personalisation is achieved
through a combination of usage and content analytics and
personalised alerts through a combination of NER, SA and
complex event processing based on rules.

The next layer comprises the data storage mechanisms.
Because of the different nature of information we collect
and extract (i.e., full text, metadata, entities, sentiment),
information is stored and indexed on multiple different
types of databases. This allows us to get the maximum out
of each DBMS and be able to quickly deliver the
appropriate information services. For this reason, we utilise
both SQL and no-SQL databases. In both cases we use
database clusters in order to support the huge amount of
data that we collect on a daily basis. The SQL databases
(RDBMS cluster) are used for storing the collected data and
all related metadata. The noSQL database is used for storing
and indexing all the information necessary for supporting
fast search and fast data analysis. With the Elasticsearch,
Logstash and Kibana (ELK) Stack we are able to define

complex analytics, which are applied in real-time on the
data we collect. At the same time, we provide full access to
the complete set of information we collect using the
RDBMS storage.

One layer above, are the language-agnostic text mining
modules (NER, SA, text clustering and classification),
which undertake the detailed analysis of the collected
textual data and the filtering and association of extracted
information. The processing pipeline applies a set of
algorithms to the texts of a stream (e.g., filtering, data
cleaning and validation, similarity measurements, clustering
and categorisation) and extracts a lot of useful information
that is stored in the RDBMS and NOSQL cluster. The first
two procedures, are done together as we expect the results
of one of them (SA) to be applied to the results of the other
(NER). Text clustering and classification is critical for our
platform, since it allows removal of redundant information
(e.g., repeated/copied news articles) and provides a better
organisation of news content. After the completion of this
procedure, we expect to have combined, connected and
‘clear’ data, which can be used for presentation or for
analytics.

The top layer of the system comprises the modules that
perform an even deeper analysis of the extracted and
organised information and produce more qualitative results
for the end-users of the system. These modules deliver the
information and services to be presented to the end-users,
such as named entity mentions analytics and reports, alerts,
an API for news and related content, which is used by our
platform but also by third party services.

This paper focuses on the NER and SA module, so from
this point forward we continue with its description. In the
visualisation of the SA and named entity extraction module
presented in Figure 3 we can distinguish three main
components. At the top of Figure 3 we have the main
infrastructure, in blue background, comprising the
subsystems that crawl the web for content, perform the
necessary preprocessing (cleaning, filtering, clustering and
classification) of text streams’ contents and store the results
to the data storage level.

Figure 3 The pipeline for NER and SA (see online version
for colours)

10 N. Makrynioti et al.

On the bottom right of Figure 3 (in red background) is the
NER module. The system accepts a batch of raw texts
combined with metadata about the batch, such as language
and source, in JSON format. Subsequently, it performs
sentence splitting, tokenisation and NER in this order. The
model contains information about which model to use for
each language and task, since different languages and types
of text are better processed using different models (e.g.,
trained with documents in the same language and for the
specific task). Each model is loaded once, runs on a separate
Java virtual machine (JVM) and employs a configurable
number of threads. The results are returned in JSON format
and contain information about sentences, their positions in
the text, the entities and their positions in the sentences.

On the bottom left of Figure 3 (in green background),
we have the SA module. The SA module takes as input a
batch of raw texts, as well as their language and source, in
JSON format. It first forwards the input data to the NER
module, in order to obtain the sentences of the text, the
entities mentioned in each sentence and the types of the
entities (e.g., person, location). After the response by the
NER module, the SA module identifies the sentiment
expressed for each entity mentioned in the sentence. Its
output is also in JSON format and contains the sentences of
the input text, the entities mentioned in each sentence along
with their types, the sentiment class for each entity in a
sentence and the overall sentiment class of each sentence.

The architecture of the SA module consists of two main
components. The first component is the web service that
receives requests by users and communicates with the NER
module. The second component is an application that
implements the SA method and provides sentiment
predictions for input data. The communication between
these components is done through messaging. Specifically,
the web service publishes messages, including input text
and the response by the NER module, to a message queue.
The application threads act as listeners to the queue and
process the messages to produce sentiment predictions.

Finally, the output JSON is inserted in another queue and is
returned back to the user.

4 Implementation
In this section we elaborate on the methods, algorithms and
models that we employ for detecting named entities in texts
and assigning sentiment labels to them based on text
segments associated with them. We also provide details
about the software, linguistic tools and resources that we
use to implement the two pipelines.

4.1 Implementation of NER approach
For the extraction of named entities from text, we capitalise
on the use of an open source library for natural language
processing, namely OpenNLP. Compared to other solutions
such as Stanford NER or NLTK NER, OpenNLP better fits
the architecture, since it is written in Java, it is open source
and provides a common suite for many text analysis tasks.
OpenNLP is a machine learning based toolkit for natural
language applications. It supports the most common
NLP tasks, such as sentence segmentation, tokenisation,
part-of-speech tagging, named entity extraction, etc.
OpenNLP provides two alternative machine learning
methods, maximum entropy models and perceptrons (neural
networks) depending on the NLP task.

In simple words, both methods solve complex problems
as classification tasks. They use an extended set of features
that is extracted from the textual content and for this reason,
for each task, they require a training set which comprises
properly annotated documents or sentences. For example,
the sentence segmentation model is trained using a set of
sentences, one sentence per line, and trains a probabilistic
model that learns whether a punctuation mark is most
probably a sentence splitting mark or not. A similar
approach is followed in other tasks.

Figure 4 Online application for creating the training corpus for the sentence splitter and the tokeniser (see online version for colours)

 PaloPro: a platform for knowledge extraction from big social data and the news 11

In the case of news processing, we use OpenNLP in three
different tasks: sentence splitting, tokenisation and NER.
Since we want to quickly deploy our solutions for different
languages, it is important for us to be able to quickly create
the appropriate (annotated) training corpora for any new
language. We attempt to solve this issue, using massive
open source data and collaboratively created text corpora,
which are usually semi-structured and rich in semantics, so
we can easily transform them to training data for our
models. For the cases that these data are not adequate, we
have created a set of annotation tools, that allow human
annotators to create additional training samples. In Section 5
we provide more details on the performance of models
which have been trained using automatically and manually
annotated datasets.

4.1.1 Sentence splitting and tokenisation
Sentence splitting and tokenisation along with part-of-
speech tagging are the most popular pre-processing tasks
that precede any other text mining or NLP task. They play
an important role in the complexity of the solution that
follows them, since they limit the context to a sentence level
and they affect the quality of any following task since they
split each sentence into lexical tokens (words) and allow for
word-based approaches to be applied.

Although OpenNLP provides pre-trained models for
sentence splitting and tokenisation in English and a few
more languages, it still lacks support for Balkan languages
or even Turkish. One may think that sentence splitting is
similar across languages. This is not the case, since for
example the semicolon in English (;) works as a question
mark in Greek. Even worse, the period symbol (.) can
denote sentence termination or not depending on the text
that appears in front of it; for example in Mr., Dr. or B.B.C.
it is simply part of the abbreviation and not a sentence
termination mark. The list of abbreviations differs across
languages and is hard to compile one list for each language.
Finally, creating a single model for a language is not always
correct, since the same language (e.g., English) may have
different syntactic rules in different contexts. This is the
reason that the Stanford POS Tagger, recently released a
second POS tagging model for informal English (e.g., for
twitter texts) which has been trained on different text
corpora.

The advantage of machine learning is that it allows us to
create any model using a properly annotated training corpus.
For example we can build a sentence splitting model by
creating a set of sentences (one per line – in the case of
OpenNLP) that contain punctuation marks. Finding or
automatically creating such a dataset for a language is not
an easy task. For this reason, we developed a module that
takes as input Html content from news articles and creates a
training dataset for sentence splitting, taking advantage of
HTML template information and the use of specific tags
(e.g., breaks and paragraph marks). We also developed a
semi-automatic solution, an online annotator for creating
training examples for sentence splitting and tokenisation
from raw text. The online annotator (see Figure 4) takes a

raw text as input and allows users to add sentence splitting
and tokenisation markup. It also offers an auto-annotate
mode, which employs the models trained so far and allows
users to correct any errors.

4.1.2 Named entity recognition
OpenNLP takes an annotated text corpus as input and
creates a NER model as output. Any raw text must first be
converted to the OpenNLP name finder training format,
which is one sentence per line. The sentence must be
tokenised and contain spans which mark the entities. If the
training file contains multiple types then the created model
will be able to detect multiple types. However, it is
recommended to only train single type models. The most
widely supported entity types in NER are person, location
and organisation. In the case of the analytics services, we
also examine products as entities. As a result, we have to
create four sets of training texts for each language (one
model per entity type).

For the creation of training corpora we implemented
different alternatives. Others use crowdsourcing open data
and manually assigned semantics, others are based on
regular expressions and others are based on manual
annotations. In the first two cases, our input is Wikipedia
and DBpedia. The advantage of this combination is that a
Wikipedia corpus is available in many languages and
comprises many semi-structured texts, where named entities
are properly annotated within the text. For example in the
following sentence, the double braces denote a link to a
page for this entity, while the pipe symbol separates the
actual entity from the string which represents it in the text.

“iPhone” is a line of [[smartphone]]s designed
and marketed by [[Apple Inc.]] They run
Apple’s [[iOS]] mobile operating system. The
[[iPhone (1st generation)|first generation
iPhone]] was released on June 29, 2007

In addition to this, DBpedia provides information on the
type of these entities. More specifically, DBpedia contains a
long list of persons, locations and organisations for many
languages and each entity can be traced to Wikipedia
sources. In the third case, manual annotation is performed
for languages that do not have a Wikipedia and DBpedia
corpus or for the case when we want to add more training
instances to the model.

4.1.2.1 Training corpus creation
When the NER mechanism is developed for a new
language, we care for a quick deployment with minimum
resources spent on text annotation. For this reason, the
mechanism that creates the wikimodel fetches the DBpedia
entities for each of the types of person, location and
organisation and adds to these lists a list of products
manually created for the target language. The mechanism
then processes all sentences of Wikipedia that contain these
entities. With a set of regular expressions and text
formatting instructions we are able to automatically convert

12 N. Makrynioti et al.

the Wikipedia corpus to an input annotated training corpus
for OpenNLP. Then using OpenNLP training we can create
the four models for the target language. The whole pipeline
is depicted in Figure 5.

Figure 5 Detailed view of the NER training pipeline (see online
version for colours)

The advantage from the use of Wikipedia manual
annotations is that they provide entity mentions with high
accuracy, since all the entities are referenced with a specific
syntax in wiki markup language. However, the recall is
lower. For example, while an entity may be mentioned
dozens of times within a Wikipedia page, some of the
mentions are not marked properly in the Wikipedia source
code. As a result we have many false paradigms (false
negatives) in the training set, which affect the model
performance. Since we only keep the sentences that contain
explicitly marked entities, we reduce the number of false
negatives. In order to increase the amount of training data
from Wikipedia we used two alternatives:

• Regex model: The first alternative increases the recall
of entities in Wikipedia pages by using regular
expressions in order to markup texts. In simple words,
the method locates consecutive words that start with a
capital letter, e.g., Simon P. Laplace or word sequences
in which stopwords may occur between names,
e.g., Joan of Arc. The method creates a list of potential
entities and then examines this list against the lexicons.
We perform a case sensitive exact search in the
lexicons using any accents supported by the language.
This is important since in some languages the use of
accents may result in different words. For example
Αθήνα is the name of the city of Athens in Greek,
whereas Αθηνά stands for the female name Athena.

• Ngram model: The second alternative performs a looser
matching of potential entities against lexicon entries. It
uses a hybrid trie-index structure for the lexicon entries,
in which each multi-keyword term in the lexicon is split
into the words that it contains. In the first level of the
index we put all the words that appear in the beginning
of lexicon terms. In the second level, the words that
appear second in a lexicon term and so on. In a word at
any level in the trie-index, we keep a Boolean that
indicates whether the word is the last word of a term in
the lexicon (terminal word). The ngram matching
algorithm looks at the first level of the index and if it
finds a match then continues to the lower levels until

the longest matching is found. The last word matched
must also be marked as a terminal word. For example,
if we have ‘John Doe’ and ‘Mary Brown’ in the lexicon
the ngram model will also match ‘John Brown’ and
‘Mary Doe’.

We must remind here that the method is used for
marking entities in Wikipedia texts and thus creating an
automatically annotated text corpus. So it is reasonable
to mark entities that do not necessarily correspond to
Wikipedia entries but resemble to proper names for
locations, person or organisations. As a result, the
method further increases recall of proper names
detection in Wikipedia, since it positively detects more
entity references, but also introduces some false
positives in the training dataset.

• Manual annotator: In order to further improve the
quality of our training dataset, and consequently the
quality of the NER model, we developed a manual
annotator.

The annotation tool, illustrated in Figure 6,
automatically performs sentence splitting and
tokenisation, using the models we presented in
Section 4.1.1 and allows users to quickly tag entities of
different types in the text. It also allows users to assign
sentiment (positive, negative or neutral) to the tagged
entities. The annotator offers an automatic annotation
option, which employs the models we trained with
Wikipedia documents and further accelerates the
annotation process. As a result, we are able to annotate
a few hundreds of articles and create an annotated
corpus for NER and SA comprising thousands of
sentences and entities within a few hours.

Figure 6 The NER and sentiment annotator application
(see online version for colours)

4.1.2.2 NER model usage
Any new text fetched by the crawling mechanisms is
processed by OpenNLP and annotated for entities of all
types. Since OpenNLP does not create a single model for all
entity types, we created a single interface that integrates the
answers of the different entity models. We modified the

 PaloPro: a platform for knowledge extraction from big social data and the news 13

OpenNLP code in order to apply the four models in a row
and consequently merge the resulting entities. When two
entities of different type overlap, we keep the one with the
highest probability or in the case of a tie, the lengthiest one.
All the implementation was wrapped in a jar file which was
further accessed using a the Python library jnius by the NER
service which was implemented in Python.

In order to further increase the recall of the machine
learning approach, we passed the texts through a second
filter which automatically marks any entity found in the text
that belong in the lexicon (using exact match). This method
adds an overhead to the pipeline since every text is scanned
a second time in a token-by-token manner, but it
significantly adds to the NER model recall.

4.2 Implementation of SA approach
SA is treated as a classification problem into three classes:
positive, negative or neutral. Neutral is used for factual
references of an entity, whereas positive and negative
classes are used for opinions. Although the method receives
sentences as input, it operates at the entity level, meaning
that if the sentence mentions more than one entities, the
system will assign a sentiment class for each entity and not
just for the entire sentence. The approach followed by the
SA module consists of two main steps:

1 split of the sentence to segments, with each segment
mentioning a single entity

2 assignment of each segment to a sentiment category.

4.2.1 Split of sentence to segments
We assume that the entities of the sentence are known and
in this case provided by the NER module of the pipeline.
We split each sentence into segments spanning from entity
to entity, with each segment containing a single entity.
Suppose we have the sentence ‘Robbie Williams was
impressive in Athens yesterday, whereas the Black Keys
concert we went to a month ago was mediocre’. The system
will automatically split this sentence to the segments
displayed in Figure 7. We observe that the first segment
spans from the beginning of the sentence to the second
identified entity. The second segment starts at the second
identified entity and extends until the third entity, whereas
the third part is from the third identified entity up to the end
of the sentence. We perform SA to each of the generated
segments in order to predict a sentiment class for each
entity, as displayed in Figure 8. If the sentence involves
only one entity, we perform SA on the whole sentence. The
idea behind this technique is that subjective words
concerning an entity are probably in small proximity from
the entity reference. The same concept is behind techniques
that use a fixed window size to define phrases around a
target. Because we deal with different types of documents, it
is hard to choose a window size that gives good
approximate results for both short and longer sentences.
Thus, we prefer to use the distance between entities to set
approximate boundaries between the segments concerning

different entities in a sentence. Syntantic analysis is
probably the most accurate way to discover dependencies
between words and entities. Nevertheless, it requires
syntactic parsers, which are not available in every language
and may need different tuning to address both formal and
informal text effectively. Given the multilingual perspective
of the platform and the heterogeneity of the processed
documents, the requirement of syntactic parsers could be
quite restrictive.

Figure 7 Segments generated from a sentence

Figure 8 Sentiments generated for each segment (see online
version for colours)

4.2.2 Prediction of sentiment
The presented approach for sentiment classification
uses a supervised machine learning algorithm and
therefore it needs training data to be initialised. However,
text data cannot be processed directly by machine learning
algorithms and we need to transform them to numeric
feature vectors. In many cases to achieve good performance,
we also need to perform preprocessing or normalisation
techniques on data. We describe the techniques/algorithms
used in each step of our system in the subsections below.

4.2.2.1 Data preprocessing
Negation is an important aspect of the semantics of a text.
We aim to identify negated context using patterns, which
start with a negation word and end with a punctuation mark.
The definition of negated context is based on Mohammad et
al. (2013). For every sentence we store whether a negated
context is identified or not. At the end of the process, we
use this information to determine whether to alter the
sentiment label from positive to negative or vice versa. We
also tried more sophisticated techniques, which involved
patterns of negation words and part-of-speech tags [e.g., (do
not)<verb>], and reversed sentiment polarity only if the
pattern negated a subjective word found in training data or
lexicons used for feature extraction described below.
Although these techniques increase average F1 by about
2%, they also require three times more processing time. As
time performance is critical for the platform, especially
during rush hours, we prefer not to increase processing time
considerably for negation identification and use a more
coarse-grained method.

Articles from news websites are usually well-structured
and without typos, unlike more informal text, such as social

14 N. Makrynioti et al.

media and forum posts, which may be terse or contain
specific abbreviations and misspellings. Prior to creating
numeric feature vectors, we preprocess data to remove noisy
elements and reduce the counter effects of inflection and
omission of stress marks. Most of the noisy elements are
met in informal text, such as social media or forum posts,
and are less present in well-written documents, such as
news websites’ articles. We consider the following elements
as noise:

1 URL links, because we do not follow them and analyse
their content.

2 Mentions of users and the abbreviation RT in case of
Twitter. RT means that a tweet is a retweet of another
one.

3 Stop words, which are extremely common words
including articles and pronouns.

In many languages, such as Greek, accent marks are used
over vowels to denote where a word is stressed. However,
users of social networks and forums often forget to add
these marks or they add them at the wrong syllable. To
avoid misspellings due to this reason, we prefer to also
remove accent marks from words. Moreover, repetitive
vowels are reduced to one and repetitive consonants are
reduced to two. Another preprocessing step is the grouping
of emoticons in two categories, positive and negative, and
the replacement of the members of each category with a
single emoticon. Positive emoticons are replaced with ‘:)’,
whereas negative are replaced with ‘:(‘.

Last but not least, we use stemming to address the
inflective nature of languages. In some languages, such as
Greek, verbs and adjectives are inflected for person, number
and gender, which affects mostly the suffixes of the words.
This variance in suffixes affects the effectiveness of
produced features and as a consequence the classification
performance also decreases. Therefore, we assume that
stems of words are usually enough to indicate the sentiment
of a text. We use the implementations of stemmers provided
by Apache Lucene (https://lucene.apache.org/).

4.2.2.2 Feature vectors extraction
Numeric feature vectors consist of bag-of-words and
lexicon-based features. Bag-of-words features are unigrams
extracted by the vocabulary of the training data. Each
feature of this type has value 1 or 0 depending on whether
the unigram is present in the instance or not. The values for
the lexicon features are determined using two lists of
subjective terms. The first one includes positive words,
whereas the second contains negative words. Two lexicon
features are extracted based on the number of words in the
instance from the positive and negative list. A third feature
of this type is also added storing the difference between the
values of the former lexicon features. As the number of
bag-of-words features is usually quite large, we use
information gain to keep a subset of the most informative
ones. The implementation of information gain algorithm is
provided by the Weka Data Mining software (Hall et al.,
2009).

4.2.2.3 Sentiment classification algorithm
After preprocessing of data and extraction of feature
vectors, we train a classification model. Training examples
are sentences or short texts, such as tweets, labelled by
human annotators with the dominant sentiment class. By
dominant sentiment class, we mean the strongest opinion
expressed for an entity in the sentence. For example if we
have a sentence with two entities, a positive opinion for the
first entity and factual information for the second, the
annotators should label this sentence as positive. In cases
where all expressed sentiments are of equal strength, we
base the sentiment class arbitrarily on the first entity. As a
result training instances are annotated at the sentence level.
However, the sentiment predictions generated by the trained
model for unseen data are at the entity/segment level, as
each sentence has been first split to as many segments as the
number of entities identified in it by the NER module.

Figure 9 Results from the use of the automatically trained models, (a) recall and precision for the ngram automatic annotation model
(b) recall and precision for the regex automatic annotation model (see online version for colours)

 (a) (b)

 PaloPro: a platform for knowledge extraction from big social data and the news 15

For the SA module we chose SVM and specifically the
liblinear implementation (Fan et al., 2008). Liblinear is a
linear classifier. We define the regularisation parameter (C)
using cross validation. When the classifier finishes giving
predictions for the input data, we check for each instance
whether negation patterns were identified during
preprocessing. If negation was identified in an instance and
its sentiment prediction is positive, we reverse it to negative
and vice versa.

As the prior polarity of words in lexicons is verified
manually, we also train a model in which the weights for
lexicon features are equal to two times the maximum weight
of the rest of the features. The purpose of this amendment is
to give lexicon features a more important role in sentiment
prediction, since the polarity of unigram features extracted
from training corpus may be biased due to specific
examples. We will refer to the model described above as SA
model and to this one as SA_boost model.

4.2.2.4 Language configuration
Given the preprocessing and feature engineering techniques,
which were described above, specific resources are
important when the SA module needs to handle a new
language. The only requirement is the existence of training
data, in order to create a trained model for SVM. All other
resources are optional, as they may be unavailable for a
language and difficult to construct from scratch. Optional
resources include stemmers, subjective lexicons,
preprocessing code and code for negation identification.
Preprocessing and negation identification code should be
straightforward, nevertheless the user is still able to omit
them. The user configures these settings through a
configuration file. Then it maps this file to a language in
another file that acts as an index for languages and
configuration files. Stemmers, preprocessing and negation
identification must be Java classes that implement a
corresponding interface, and are stored in different
packages, with one package per language. Lexicons are text
files including one word per line and possibly a score
assigned to each word separated with a tab. These scores
denote the strength of the sentiment expressed by a word. In
a simple scheme where there is no information about the
strength of the sentiment, the scores may have only two
values, 1 for positive words and –1 for negative ones.

When texts are submitted, the SA module checks the
language metadata of the input and uses the index to map
the language to a configuration file. By reading the
respective configuration file, the module is able to apply the
correct preprocessing and feature engineering techniques on
input texts. The applicability of an earlier version of the SA
module to other languages is also presented in experiments
in Makrynioti and Vassalos (2015).

5 Evaluation
In this section, we present some initial results from the
application of our modules to validation datasets.

5.1 NER performance
This section tests the performance of the NER module
against an evaluation dataset, which comprises texts in
Greek collected from news sites (100 texts), twitter (102
tweets) and Facebook (113 posts). This resulted to 1,366
sentences in total. The performance of the models, which
have been created using the automatically annotated
Wikipedia corpus and DBpedia (regex and ngram models)
are depicted in Figure 9. The four different pairs of columns
in the results correspond to the matching method we used
for evaluation. The strict matching method counts a hit
when the correct entity was marked exactly in the text and
with the correct type. The loose method counts a hit when
the entity was partially marked (e.g., only the last name of
the person, or the entity and a neighbouring word) and the
type was marked correctly. The colourblind method counts
all exact entity matches that probably are assigned to wrong
entity types. This metric is useful, since it is easy to confuse
between a company and a product or in some cases between
a name and a location. Finally, the haywire method counts
all partial matches even when the entity type detected was
not correct. From the results, we can see that in all cases,
both methods have a fair precision but significantly low
recall. The low recall is mainly due to the partial annotation
of Wikipedia entities, which was not fully treated by the
regex and ngram annotation methods.

In order to compare the performance of automatically
created and trained models to that of manually annotated
corpora, we trained the so-called human NER models using
a manually annotated set comprising approximately 2,000
texts from all types of sources. Finally, we managed to
boost recall without losing in precision, by adding the
lexicon-based annotation, which marks any entity that has
not been marked by the models but appears in the lexicon.
We took advantage of this increase in recall and were more
strict in the use of the machine learning by adjusting a
threshold parameter from –3 (default) to –1. This threshold
defines which assignments will be kept in each iteration of
the MaxEnt algorithm. Less negative values correspond to
more confident assignments. Figure 10 presents the results
of the human model with and without the addition of a
lexicon. From the results we can see that the use of
manually annotated corpora raised the precision above 80%
in some cases and at 70% in the case of strict matching. The
use of lexicons helped us improve the recall of our methods
by almost 10% in all cases.

A comparison across the different types of text sources
reveals that the performance on Facebook posts and Twitter
texts is worst than that of articles, which can be explained
by the frequent use of informal language in the two types of
media.

5.2 SA performance
We also present some initial results from the application of
the SA module on short texts, such as tweets, and larger
texts extracted from sites and blogs. We use two validation
datasets, one consisting of 100 sentences from tweets

16 N. Makrynioti et al.

and short Facebook posts, and another comprising of
97 sentences from news articles and blog posts. The former
dataset mentions 141 entities, whereas the latter includes
145 entity references. Note that the number of sentiment
predictions produced by the classifier corresponds to the
number of entities mentioned in the dataset, so in these
experiments it would be 141 for the dataset of sentences
from short posts and 145 for the dataset of sentences from
larger texts.

The performance of the SA model with equal weights
for all features regarding short texts from Twitter and
Facebook is depicted in Figure 11(a). The three different
columns in the results correspond to precision (purple),

recall (green) and F1 (light blue) evaluated for each
sentiment class. We can see that precision of positive and
negative classes is much higher than neutral class, whereas
the results for recall are the exact opposite. This behaviour
indicates that many positive and negative predictions of the
module are precise, whereas a number of subjective tweets
are recognised mistakenly as neutral. Experiments on
sentences from sites articles and blog posts are presented in
Figure 11(b). Here we can observe a drop in precision for
positive and negative classes, as sentiment is expressed
more implicitly in sites and blogs than in social media.

Figure 10 Results from the models trained on human annotated corpora with and without lexicons, (a) recall and precision without
lexicons (b) recall and precision with lexicons (see online version for colours)

(a) (b)

Figure 11 Results on short and larger texts with the SA model (all weights are equal), (a) results on tweets and short Facebook posts
(b) results on site articles and blog posts (see online version for colours)

(a) (b)

 PaloPro: a platform for knowledge extraction from big social data and the news 17

Figure 12 Results on short and larger texts with the SA_boost model (increased weights for lexicon features), (a) results on tweets and
short Facebook posts (b) results on site articles and blog posts (see online version for colours)

(a) (b)

In Figure 12(a) we present the performance of the SA_boost
model with boosted weights for lexicon features on tweets
and short Facebook posts. The increase in weights of
lexicon features results in significantly better precision and
recall for negative class. The F1 for the other classes is also
a bit higher than in Figure 12(b). On sentences from articles
the boost of lexicon features does not affect performance so
much. We can see an increase in all metrics for positive
class, but this does not apply for the other two classes. Since
sentiment is usually more implicit in such types of text, it is
expected that words with known prior polarity may not help
that much.
5.3 Time performance
In this section we measure the time performance of our
pipeline, providing evidence separately for the NER and SA
modules. We report on the time needed for training the
model and the time needed for processing an increasing
amount of content. The datasets that we used are in different
languages (i.e., English, Greek, Serbian and Turkish) in an
attempt to demonstrate the ability of our platform to handle
multilingual content and also measure the effect of the size
of models in the performance of the system. Finally, we ran
our experiments on a Linux server with Intel Xeon CPU at
3.50 GHz with four cores, and 32 GB memory, and we use
different setups that either exploit or not the multithreading
capabilities of the pipeline.

5.3.1 SA time performance
In order to evaluate the performance of the SA module in
training models of various sizes, we run experiments using
datasets of different sizes in three different languages:
English, Greek and Serbian. We used a small manually
annotated dataset in Serbian of 1,572 sentences and two
much larger datasets for the Greek and English languages

comprising 1,000,000 and 1,600,000 instances respectively.
The Greek dataset was automatically created to be
used only in time performance tests by assigning a
sentiment class randomly to each instance, whereas
English data were downloaded from the Sentiment140
(http://www.sentiment140.com/) API and include only
positive and negative tweets. Table 1 depicts the time
required for creating SA models from the respective training
data in the three languages, which is less than a minute for
the small corpora, and reaches a few hours in the case of the
large training corpus in English and Greek.

Figure 13 Response time per number of threads (see online
version for colours)

In the second experiment, we test the time performance of
the SA module in predicting sentiment for new data. We
used a Greek model extracted from 8,000 manually
annotated instances and tested on 30,694 sentences. In
Figure 13 we present the number of sentences processed by

18 N. Makrynioti et al.

the SA module per second (module’s throughput). This
number is strongly affected by the number of available
processing cores, so we display results using a varying
number of threads. In the results, we observe that even in
the single-threaded mode, the SA module is able to process
a large number of sentences per second (more than 1,000
sentences per second). We observe that throughput is more
than three times higher when using four threads on a
machine of four CPU cores compared to using a single
thread. However, depending on the available CPU cores,
after a number of threads the overhead of creating and
managing new ones increases considerably. Thus the
number of sentences/sec processed by eight threads
increases a little compared to four threads on a machine
with four CPU cores, but the difference is significantly
higher when going from one to two threads or from two to
four threads.

Table 1 Training time on data from three languages

Language (number of instances) Time (hours)

Serbian (1,572) 0.004
Greek (1,000,000) 2.78
English (1,600,000) 4.78

5.3.2 NER time performance
In order to evaluate the performance of the NER module,
we ran similar experiments using corpora of different sizes
for training and annotation. In the case of the NER module,
we train four separate models for each language in order to
identify locations, organisations, products and person
names. For the experiments we use Wikipedia as a text

source and DBpedia as a lexicon source as explained in
Section 4.1.2 and we evaluate the system performance for
the English, Greek and Turkish language. All the times
reported in Tables 2 and 3 are measured on the same
machine as before but using the single thread version. This
means that the throughput can be three to four times bigger
if we take advantage of the four CPU cores.

The process for the creation of NER models as
explained in Section 4.1.2 begins with the annotation of the
Wikipedia corpus with the entities of a certain type as listed
in DBpedia. Then from all the sentences in the Wikipedia
corpus we keep only the sentences that contain at least one
entity of this type and using this set of sentences we train
our model, which is specific for this language and the
respective entity type. This process is repeated for the four
entity types of interest.

It is obvious from the numbers presented in Table 2 that
the size of the English Wikipedia corpus is much bigger
than that of other languages. Furthermore, we see that the
number of entities and sentences extracted as well as the
time it takes to label the sentences is proportional to the size
of the corpus. As a consequence, the processing time and
the size of the models for the English language are much
bigger. Table 2 presents the number of entities extracted
from DBpedia for each type of entity and each language, the
number of Wikipedia sentences that contained an entity of
that type, the time needed for training the respective model
using OpenNLP and the size of the binary model that was
created. We trained the model on all the sentences extracted
to check scalability, however, in practice especially for the
English dataset, it would be wise to feed the training
algorithm with an increasing subset of the data until the
model performance no further improves.

Table 2 Statistics for NER models built from Wikipedia for English, Greek and Turkish

 Location Organisation Person Product

Number of entities added to lexicon 617,537 202,636 544,497 41,847
Number of sentences extracted 3,574,287 2,520,794 2,684,434 145,227
Model train time in seconds 9,499.9 7,264.5 8,155.1 366.9
Model size in megabytes 68 48 64 16

(a) English

 Location Organisation Person Product

Number of entities added to lexicon 5,736 1,724 5,259 877
Number of sentences extracted 103,522 14,209 19,484 2,051
Model train time in seconds 327.9 35.5 55.2 4.5
Model size in megabytes 5.3 0.94 1.5 0.15

(b) Greek

 Location Organisation Person Product

Number of entities added to lexicon 10,511 6,071 22,361 643
Number of sentences extracted 102,086 56,960 73,154 1,041
Model train time in seconds 242.6 103.9 148.8 1.3
Model size in megabytes 4.7 2.5 4.1 0.06

(c) Turkish

 PaloPro: a platform for knowledge extraction from big social data and the news 19

Table 3 Wikipedia statistics for English, Greek and Turkish Wikipedia

 English Greek Turkish

Corpus size (gigabytes) 51 1.2 1.7
Corpus size (sentences) 50,560,419 2,053,992 4,900,147
Total NER annotation time (seconds) 13,481 198 326
Average sentence length in chars 132 142 111
Throughput (sentences per second) 77 265 294
Throughput (kbytes per second) 9.94 36.76 31.88

In order to evaluate the performance of the NER module in
annotating new corpora, we used once again the raw
Wikipedia corpus in the same language. This time, the
annotation was done using the trained NER models from the
previous steps. Results in Table 3 show the size of the
corpus we annotated and the total time we needed for the
annotation. It is indicative that we need three and half hours
to annotate the full English Wikipedia corpus for named
entities using only one CPU. Using the four CPUs and more
threads, it is possible to process the 51 Gbytes dataset in
less than one hour. From the total NER annotation time and
the corpus size in sentences we get an estimate of the
module throughput performance, which varies significantly
between languages. It is obvious that the size of the
Wikipedia corpus varies significantly between languages.
We also notice a difference in the average sentence
size, which also affects the NER module throughput
performance. The differences in performance are also due to
the larger number of features used in OpenNLP when
trained over a much larger corpus, as well as the larger
lexicon that is used.

6 Challenges
6.1 Multilingual content
The biggest challenge for the solutions that we develop for
detecting entities and sentiment is that they must be
language agnostic.

As far as it concerns NER, the most promising language
independent technique is the statistical learning technique of
maximum entropy (Sang and De Meulder, 2003; Curran and
Clark, 2003) and the hidden Markov models and their
variations (Zhou and Su, 2002). In our approach, we employ
the maximum entropy model, which is a supervised
technique that requires a training dataset for each language
annotated with entities of different type. It is important to
annotate all entity occurrences within the training set and
provide a balanced set with equal number of entities from
each category. It is also important, to train different models
for each different language style (for example a different
model for tweets and a different model for news articles).
The large number of different language styles (even
newspapers do not all use the same writing style) and the
continuous domain shift in the sphere of news (new topics
and new entities appear every day) make it important for a
NER system to be able to adapt to domain changes

(Wu et al., 2009). In order to achieve this adaptability, we
have implemented a hybrid annotation technique, which
combines the trained NER model and domain lexicons that
contain verified named entities. On top of this annotation,
we created a bootstrapping mechanism, which suggests new
named entities to be added to the lexicon, when they are
frequently detected within the articles. The use of lexicon
guarantees that all the occurrences of these words will be
detected in the text, even when the NER model fails, thus
increasing recall. And this process runs continuously for
every new language corpus.

The need for extensive training also exists in the case of
SA. The techniques that use word vectors (Wu et al., 2009),
latent Dirichlet allocation (LDA) (Boyd-Graber and Resnik,
2010) or any supervised algorithm require large training
corpora or parallel linguistic resources in all languages
(thesauri, lexicons, etc.) in order to operate. In all cases, the
human resources required for training the models and the
processing power for applying them to new texts is huge.
Once again, we developed tools that allow the quick and
semi-automatic creation of training corpora. The annotation
tools support an Auto-annotate feature, which employs
existing models in order to annotate the texts and then
allows human annotators to correct any possible errors, thus
reducing the overall effort required. When applying the
models, we take advantage of the multiprocessor
infrastructure and balance the load for the different
languages.

6.2 Entity type ambiguity
One of the biggest challenges in the recognition of named
entities in texts is the resolution of ambiguity for certain
entity names and types.

One type of ambiguity refers to the names of companies
or products (mainly), which can be simple words that we
use in the everyday life, e.g., Windows, Apple, Amazon, to
name a few. A solution to this ambiguity can be to examine
the context of the word in order to decide whether it
corresponds to an entity or not. The algorithm that we use
and the most popular probabilistic NER algorithms (i.e.,
CRFs, hidden Markov models) take into account the
neighbourhood of a candidate entity word in order make a
decision. However, a side problem that arises in this case is
that a large set of annotated documents is needed in order to
cover as many entity context cases as possible. Another
solution is to create specific entity lexicons for each country

20 N. Makrynioti et al.

and language, but this is a tedious task which requires many
resources. In our approach, we are able to suggest words to
be added (semi-automatically) to such lexicons, when they
are frequently detected by the NER algorithm.

Another type of ambiguity refers to terms that
correspond to more than one entity types. For example, it is
quite common that companies (or organisations) take the
name of the place they originate (e.g., Liverpool soccer
team, Aegean airlines, Oxford university) and we have to
search for a word in the context that determines the entity’s
type. Once again probabilistic NER algorithms perform well
when available training instances exist.

A third type of ambiguity, which is more evident in
morphologically rich languages such as Arabic or Greek, is
to detect all the different writings of the same entity.
Although this does not affect the named entity detection
algorithm, it is important for the analytics engine, where we
need to group all the different mentions under the same
entity. Once again, our system provides a semi-automatic
solution that suggests pairs of words that potentially
correspond to the same entity. These pairs may appear
frequently within the same context (the same article, within
a set of articles that are on the same topic), may have high
similarity in character-level or both.

6.3 Coreference resolution
An even more difficult task than detecting the different
writings of the same entity can become coreference
resolution. Coreference resolution is the task of grouping all
the mentions of entities in a document into equivalence
classes so that all the mentions in a given class refer to the
same discourse entity. This assumes that even relative
pronouns in a sentence can refer to an entity mentioned in a
previous sentence. This problem is not so critical, when we
only need the mentions to a named entity in article level.
However, when we need fine-grained analytics that locate
references to entities in sentence level and we are also
interested to the opinion or sentiment assigned to the entity,
then it is more important to detect such implicit references.
For example, when a sentence mentions the name of the
product and the sentence that follows expresses a negative
sentiment on this product, without mentioning its name
again, the resolution of coreference is important.

Despite the advances done for the English languages,
the resolution of coreference for many languages is still far
from being solved and several linguistic analysis resources
are necessary in order to tackle it. Since we focus on content
in multiple languages we have not yet incorporated a
coreference resolution module into our architecture.

6.4 Content size
Another important issue when dealing with news and social
media content is the volume and volatility of data. For
example, when a major event happens in a country, the
volume of tweets and articles multiplies
(Giannakoulopoulos and Varlamis, 2009; Anstead and
O’Loughlin, 2011) and the load for the system too.

Although short term analysis of content is useful for
sentiment monitoring purposes, the content itself may be of
little use after the event. So it is important in such cases to
process the content on the fly and summarise the sentiment
or entity references. However, the content itself may be
useful for post analysis or even when the users want to drill
down to each specific mention to an entity instead of
looking at the broad picture (mentions and overall
sentiment).

In order to tackle this, we have two processing
pipelines: one that processes content stream on the fly and
feeds our real-time analytics and one that aggregates the
content and stores it for future analysis or review. The first
pipeline has to be really fast and offer a high throughput,
whereas the second has lowest priority and uses the
available resources in order to run various analytics on the
raw text data.

7 Conclusions
In this article we presented the overall architecture of our
platform, which is designed for the collection and analysis
of social media and the news. We focused on the modules
that perform text mining and analytics in order to extract
useful knowledge for entities and sentiment associated to
them. An initial analysis of the performance of the NER and
SA modules shows that the solution achieves a performance
which is comparable to related systems. There is still
enough room for improving the quality of results and reach
the levels of state-of-the art NLP methods, which however
are evaluated in smaller test corpora and mostly focus on
quality of results and neglect processing speed.

Acknowledgements
Part of the research in this paper was conducted for the
ICT-000651 proposal, in the context of the ICT4Growth
action.

References
Abbasi, A., Chen, H. and Salem, A. (2008) ‘Sentiment analysis in

multiple languages: feature selection for opinion classification
in web forums’, ACM Trans. Inf. Syst., June, Vol. 26, No. 3,
pp.12:1–12:34 [online] http://doi.acm.org/10.1145/
1361684.1361685 29.

Abdul-Mageed, M., Diab, M.T. and Korayem, M. (2011)
‘Subjectivity and sentiment analysis of modern standard
Arabic’, in Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language
Technologies, Ser. HLT ‘11, Association for Computational
Linguistics, Stroudsburg, PA, USA, Vol. 2, pp.587–591
[online] http://dl.acm.org/citation.cfm?id=2002736.2002851.

Anstead, N. and O’Loughlin, B. (2011) ‘The emerging viewertariat
and BBC question time: Television debate and real-time
commenting online’, The International Journal of
Press/Politics, Vol. 16, No. 4, p.1940161211415519.

 PaloPro: a platform for knowledge extraction from big social data and the news 21

Atteveldt, W.V., Ruigrok, N. and Schlobach, S. (2008) ‘Good
news or bad news? conducting sentiment analysis on Dutch
text to distinguish between positive and negative relations’,
in Inf. Technology and Politics, Vol. 5, No. 1, pp.73–94.

Barbosa, L. and Feng, J. (2010) ‘Robust sentiment detection on
twitter from biased and noisy data’, in Proceedings of
the 23rd International Conference on Computational
Linguistics: Posters, Association for Computational
Linguistics, pp.36–44.

Blair-Goldensohn, S., Neylon, T., Hannan, K., Reis, G.A.,
Mcdonald, R. and Reynar, J. (2008) ‘Building a sentiment
summarizer for local service reviews’, in NLP in the
Information Explosion Era.

Boiy, E. and Moens, M.F. (2009) ‘A machine learning approach to
sentiment analysis in multilingual web texts’, Information
Retrieval, Vol. 12, No. 5, pp.526–558.

Boyd-Graber, J. and Resnik, P. (2010) ‘Holistic sentiment analysis
across languages: Multilingual supervised latent Dirichlet
allocation’, in Proceedings of the Conference on Empirical
Methods in Natural Language Processing, ACL, pp.45–55.

Cambria, E. and White, B. (2014) ‘Jumping NLP curves: a review
of natural language processing research’, Computational
Intelligence Magazine, IEEE, Vol. 9, No. 2, pp.48–57.

Celikkaya, G., Torunoglu, D. and Eryigit, G. (2013) ‘Named entity
recognition on real data: a preliminary investigation for
Turkish’, in Application of Information and Communication
Technologies (AICT), 7th International Conference on, IEEE,
pp.1–5.

Curran, J.R. and Clark, S. (2003) ‘Language independent NER
using a maximum entropy tagger’, in Proceedings of the
Seventh Conference on Natural Language Learning,
HLT-NAACL, Association for Computational Linguistics,
Vol. 4, pp.164–167.

Engonopoulos, N., Lazaridou, A., Paliouras, G. and
Chandrinos, K. (2011) ‘ELS: a word-level method for
entity-level sentiment analysis’, in WIMS, ACM, p.12.

Fan, R-E., Chang, K-W., Hsieh, C-J., Wang, X-R. and Lin, C-J.
(2008) ‘Liblinear: a library for large linear classification’,
Journal of Machine Learning Research, Vol. 9,
pp.1871–1874.

Fan, W. and Gordon, M.D. (2014) ‘The power of social media
analytics’, Communications of the ACM, Vol. 57, No. 6,
pp.74–81.

Finkel, J.R., Grenager, T. and Manning, C. (2005) ‘Incorporating
non-local information into information extraction systems by
Gibbs sampling’, in Proceedings of the 43rd Annual Meeting
of ACL, pp.363–370.

Giannakoulopoulos, A.P. and Varlamis, I. (2009) ‘Developing a
civic journalism social medium on the web: Technological
methods and constraints’, in Proceedings of the Colloque
International Enjeuxet Usages des TIC (EUTIC), Bordeaux,
France.

Godbole, N., Srinivasaiah, M. and Skiena, S. (2007) ‘Large-scale
sentiment analysis for news and blogs’, in Proceedings of the
International Conference on Weblogs and Social Media
(ICWSM).

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and
Witten, I.H. (2009) ‘The weka data mining software:
an update’, SIGKDD Explor. Newsl., November, Vol. 11, No.
1, pp.10–18.

Hu, M. and Liu, B. (2004) ‘Mining and summarizing customer
reviews’, in Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, Ser. KDD ‘04, ACM, New York, NY, USA,
pp.168–177 [online]
http://doi.acm.org/10.1145/1014052.1014073.

Hu, X., Tang, J., Gao, H. and Liu, H. (2013) ‘Unsupervised
sentiment analysis with emotional signals’, in Proceedings of
the 22nd International Conference on World Wide Web,
Ser. WWW ‘13.

Johannessen, J.B., Hagen, K., Haaland, Å., Jónsdottir, A.B.,
Nøklestad, A., Kokkinakis, D., Meurer, P., Bick, E. and
Haltrup, D. (2005) ‘Named entity recognition for the
mainland Scandinavian languages’, Literary and Linguistic
Computing, Vol. 20, No. 1, pp.91–102.

Li, C., Weng, J., He, Q., Yao, Y., Datta, A., Sun, A. and Lee, B-S.
(2012) ‘Twiner: named entity recognition in targeted twitter
stream’, in Proceedings of the 35th International ACM SIGIR
Conference on Research and Development in Information
Retrieval, Ser. SIGIR ‘12, ACM, New York, NY, USA,
pp.721–730.

Liu, X. and Zhou, M. (2013) ‘Two-stage NER for tweets with
clustering’, Information Processing & Management, Vol. 49,
No. 1, pp.264–273.

Liu, X., Zhou, M., Wei, F., Fu, Z. and Zhou, X. (2012) ‘Joint
inference of named entity recognition and normalization for
tweets’, in Proceedings of the 50th Annual Meeting of the
ACL, Ser. ACL ‘12, ACL, Stroudsburg, PA, USA, Vol. 1,
pp.526–535.

Locke, B.W. (2009) Named Entity Recognition: Adapting
to Microblogging, Computer Science Undergraduate
Contributions, Paper 29.

Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y. and
Potts, C. (2011) ‘Learning word vectors for sentiment
analysis’, in Proceedings of the 49th Annual Meeting of the
ACL: Human Language Technologies, Association for
Computational Linguistics, Vol. 1, pp.142–150.

Makrynioti, N. and Vassalos, V. (2015) ‘Sentiment extraction from
tweets: multilingual challenges’, DaWaK 2015, pp.136–148.

Minkov, E., Wang, R.C. and Cohen, W.W. (2005) ‘Extracting
personal names from email: applying named entity
recognition to informal text’, in Proceedings of the
Conference on Human Language Technology and Empirical
Methods in Natural Language Processing, Ser. HLT ‘05,
Association for Computational Linguistics,
Stroudsburg, PA, USA, pp.443–450 [online]
http://dx.doi.org/10.3115/1220575.1220631.

Mohammad, S., Kiritchenko, S. and Zhu, X. (2013) ‘NRC-Canada:
Building the state-of-the-art in sentiment analysis of tweets’,
in Second Joint Conference on Lexical and Computational
Semantics (*SEM), Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval), June, Vol. 2,
pp.321–327.

Nasukawa, T. and Yi, J. (2003) ‘Sentiment analysis:
capturing favorability using natural language processing’, in
Proceedings of the 2nd International Conference on
Knowledge Capture, Ser. K-CAP ‘03, ACM,
New York, NY, USA, pp.70–77 [online]
http://doi.acm.org/10.1145/945645.945658.

Pak, A. and Paroubek, P. (2010) ‘Twitter as a corpus for sentiment
analysis and opinion mining’, in Proceedings of the Seventh
conference on International Language Resources and
Evaluation (LREC’10), European Language Resources
Association (ELRA), May.

22 N. Makrynioti et al.

Pang, B., Lee, L. and Vaithyanathan, S. (2002) ‘Thumbs up?:
sentiment classification using machine learning techniques’,
in Proceedings of the ACL-02 Conference on Empirical
Methods in Natural Language Processing, ACL, Vol. 10,
pp.79–86.

Popescu, A-M. and Etzioni, O. (2005) ‘Extracting product features
and opinions from reviews’, in Proceedings of the Conference
on Human Language Technology and Empirical Methods in
Natural Language Processing, Ser. HLT ‘05, Association
for Computational Linguistics, Stroudsburg, PA, USA,
pp.339–346 [online]
http://dx.doi.org/10.3115/1220575.1220618.

Richman, A.E. and Schone, P. (2008) ‘Mining wiki resources for
multilingual named entity recognition’, in ACL, pp.1–9.

Ritter, A., Clark, S., Mausam, and Etzioni, O. (2011) ‘Named
entity recognition in tweets: An experimental study’,
in Proceedings of the Conference on Empirical Methods in
Natural Language Processing, Ser. EMNLP ‘11, ACL,
Stroudsburg, PA, USA, pp.1524–1534.

Sang, E.F.T.K. and De Meulder, F. (2003) ‘Introduction to the
Conll-2003 shared task: Language-independent named entity
recognition’, in Proceedings of the Seventh Conference on
Natural Language Learning, HLT-NAACL, Vol. 4,
Association for Computational Linguistics, pp.142–147.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D.,
Ng, A.Y. and Potts, C. (2013) ‘Recursive deep models for
semantic compositionality over a sentiment treebank’,
in Proceedings of the Conference on Empirical Methods in
Natural Language Processing, Association for Computational
Linguistics, Stroudsburg, PA, October, pp.1631–1642.

Szarvas, G., Farkas, R. and Kocsor, A. (2006) ‘A multilingual
named entity recognition system using boosting and C4.5
decision tree learning algorithms’, The Ninth International
Conference on Discovery Science 2006, DS 2006, Barcelona,
Spain, pp.267–278.

Turney, P.D. (2002) ‘Thumbs up or thumbs down?: semantic
orientation applied to unsupervised classification of reviews’,
in Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, Ser. ACL ‘02, pp.417–424.

Varlamis, I., Tsirakis, N., Poulopoulos, V. and Tsantilas, P. (2014)
‘An automatic wrapper generation process for large scale
crawling of news websites’, in Proceedings of the 18th
Panhellenic Conference on Informatics, ACM, pp.1–6.

Wiebe, J. and Riloff, E. (2005) ‘Creating subjective and objective
sentence classifiers from unannotated texts’, in CICLing,
pp.486–497.

Wilson, T., Wiebe, J. and Hoffmann, P. (2005) ‘Recognizing
contextual polarity in phraselevel sentiment analysis’,
in Proceedings of the Conference on Human Language
Technology and Empirical Methods in Natural Language
Processing, Ser. HLT ‘05, pp.347–354.

Wu, D., Lee, W.S., Ye, N. and Chieu, H.L. (2009) ‘Domain
adaptive bootstrapping for named entity recognition’,
in Proceedings of the Conference on Empirical Methods in
Natural Language Processing, Association for Computational
Linguistics, Vol. 3, pp.1523–1532.

Zhao, J., Dong, L., Wu, J. and Xu, K. (2012) ‘Moodlens:
an emoticon-based sentiment analysis system for Chinese
tweets’, in Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, Ser. KDD ‘12, pp.1528–1531.

Zhou, G. and Su, J. (2002) ‘Named entity recognition using an
hmm-based chunk tagger’, in Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics,
Association for Computational Linguistics, pp.473–480.

