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Abstract: PaloPro is a platform that aggregates textual content from social media and news sites 
in different languages, analyses them using a series of text mining algorithms and provides 
advanced analytics to journalists and social media marketers. The platform capitalises on the 
abundance of social media sources and the information they provide for persons, products and 
events. In order to handle huge amounts of multilingual data that are collected continuously, we 
have adopted language independent techniques at all levels and from an engineering point  
of view, we have designed a system that takes advantage of parallel distributed computing 
technologies and cloud infrastructure. Different systems handle data aggregation, data processing 
and knowledge extraction and others deal with the integration and visualisation of knowledge. In 
this paper, we focus on two important text mining tasks, named entity recognition from texts and 
sentiment analysis to extract the sentiment associated with the corresponding identified entities. 
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1 Introduction 
The enormous advances in social media and their power to 
reflect and influence public opinion made them a domain of 
great interest for marketeers, communication specialists, 
journalists and entrepreneurs who want to invest in 
knowledge extraction from them. In this content-rich 
environment people report or comment on individuals, 
brands, products, services, etc. by providing references to 
named entities, polarised opinions about them and ratings 
about different aspects of the same entity. This huge amount 
of information is mainly unstructured text addressing human 
readers and hence, the only way to extract useful knowledge 
from it is by using natural language processing (NLP) 
techniques. 

Despite the recent advances in NLP research that  
led to producing artificially intelligent behaviours,  
e.g., Google, IBM’s Watson, and Apple’s Siri, there are still 
many challenges to be faced in order to allow knowledge 
extraction from social media content to scale to big data. 
Popular NLP algorithms are tested for their performance in 
small-sized, properly curated corpora and have not been 
evaluated their ability to handle abundant social media 
content. Existing text mining and text processing solutions 
are tuned and tested only for English and a few more 
popular languages, but can hardly adapt to any language, 
especially languages with minimum linguistic resources. 
Finally, NLP researchers face the challenge to jump from 
the syntactic to the semantics curve (Cambria and White, 
2014) in text representation and analysis. 

Big players from the web and databases domains invest 
in social media analytics with generic frameworks and 
platforms (e.g., IBM social media analytics) that emphasise 
on the analytics part but do not focus on text mining, or with 
extensions of their existing platforms (e.g., Google news  
lab and Google analytics) that incorporate content from 
specific social media using associate data hubs and plugins  
(e.g., Google’s social data hub). Social media and news 
platforms on the other side, provide comprehensive  
social media data and libraries of tools for analytics  
(e.g., Thomson Reuters Machine Readable News,  

Radian 6, Lexalytics, Synthesio). They use Twitter, 
Facebook and other social media APIs to collect data in 
streams and provide commercial archives/feeds and 
associated analytics. Finally, social media monitoring  
tools such as Brandwatch (http://www.brandwatch.com), 
Sysomos (http://www.sysomos.com/), Trackur (http://www. 
trackur.com/) and Engagor (https://engagor.com/) focus on 
the monitoring of popular social media, target central 
European and US markets and their primary users are 
market analysts with good technological background, since 
they offer complex visualisation interfaces which are 
intended to be used by experienced users. 

In this dynamic environment, we have developed a 
flexible infrastructure, which allows to quickly expand to 
new markets, to collect, analyse and visualise social media 
pulse about companies and products. The company behind 
PaloPro platform was founded in Greece, in 2008 and 
launched the first news search engine for Greece, which 
offers news clustering and news summarisation services. At 
the end of 2012 the company launched an innovative 
platform for monitoring, measuring and analysing all web 
mentions of a company, brand, person or product that was 
introduced in the Greek market. As part of its expansion 
strategy, the company has already launched the platform in 
Greece, Serbia, Cyprus, Romania and Turkey since it targets 
the market of South Eastern Europe where the competition 
is not so mature and the technological challenges, due to 
multi-linguality and content size are even harder. The 
platform uses a unique crawling and data analytics 
mechanism, which can be quickly adapted to any new 
language thus allowing to expand to more EU countries At 
that point of expansion, PaloPro platform will have a  
unique advantage against competitors, which will be the 
pan-European market coverage. 

As presented in Figure 1, the crawler module is able to 
collect a large number of data which is estimated at 1,000 
articles per minute during the rush hours leading to an 
increase of 2.5 Gb per month of compressed data. The data 
in absolute numbers are more than ten million records per 
month from all the possible data sources while as it is 
obvious most of them derive from twitter. 
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Figure 1 Statistics on data collected within a year (July 2014–June 2015), (a) number of data collected per type  
(b) data distribution percentage per type (see online version for colours) 

 
 (a)      (b) 

 

Social media analytics involves a three-stage process: 
capture, understand, and present (Fan and Gordon, 2014). In 
the capture phase, a crawling engine is responsible for 
monitoring or ‘listening’ to various social media sources, 
archiving relevant data and extracting useful metadata. 
Since the collected data are not useful in their entirety, the 
understand phase is responsible for selecting relevant data, 
removing noisy and low quality data, and analysing the 
collected data using NLP and data mining techniques. The 
last phase (present) is responsible for displaying the 
findings of phase 2 to the end user in the form of dynamic 
reports. In this article we focus on certain aspects of the 
second and third phase. More specifically, we present our 
language agnostic solution for the recognition of named 
entities and the detection of opinion polarity about these 
entities. We present the pipeline we developed and provide 
initial evidence on its performance against news and social 
media post streams. In addition, we present the architecture 
that supports the analytics dashboard, which allows us to 
develop real time analysis components based on predefined 
templates and content dynamically collected from social 
media. 

The advantages of the proposed architecture can be 
summarised in the following: 

• a language agnostic solution for named entity 
recognition (NER) and sentiment analytics, which is 
based on machine learning techniques and a 
combination of automatically annotated corpora, 
manual annotations and crowdsourced annotated data 
(such as Wikipedia and DBpedia) 

• a set of tools for automatic training-corpus creation and 
model training and a set of annotation tools that allow 
the fine tuning of our NER and opinion mining models 

• a methodology, which has been tested against different 
language corpora comprising both formal (e.g., news 
articles) and informal texts (e.g., tweets and blog posts) 

• a modular and multithreaded pipeline, which can easily 
take advantage of all available resources and perform 
on a cloud infrastructure. 

In Section 2 that follows, we present an overview of related 
research works on NER and sentiment analysis (SA), which 
are the main social media analytics tasks presented in this 
work. In Section 3 we present the overall architecture of the 
platform and in Section 4 we provide the pipeline and main 
implementation details of the NER and SA modules. 
Section 5 performs a first evaluation of the two modules in 
terms of accuracy and Section 6 describes the challenges 
text analytics systems face. Finally, Section 7 concludes the 
paper. 

2 Related work 
2.1 Named entity recognition 
The term NER refers to the task of recognising information 
units like persons, companies, organisations and locations 
and identifying references to these entities in structured or 
unstructured texts such as news articles, social media posts, 
comments, etc. 

During the last 25 years, NER has attracted great 
research focus and a lot of work has been devoted to the 
analysis of English texts. Another large proportion of work 
addresses multilingualism problems in the field of NER. In 
this context, apart from English, languages such as German, 
Spanish, Dutch, Italian, Japanese, Chinese and French have 
been well studied. Moreover, many other languages 
(including Balkan languages) received some attention, such 
as Greek, Bulgarian, Catalan, Danish, Romanian, Russian 
and Turkish. One main approach for addressing NER is 
supervised learning, an approach wherein a system is 
trained on a corpus of annotated texts with intent to extract 
rules that maximise the probability of correctly identifying 
named entities and distinguishing between their different 
types in unseen texts. 

A lot of multilingual or language agnostic NER 
approaches have been presented in the CoNLL-2003  
shared task for language-independent NER (Sang and  
De Meulder, 2003), where the training dataset contained 
both English and German texts and the challenge was  
to label entities in untagged texts in both languages  
(test dataset). All the systems developed for the  
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CoNLL-2003 shared task used a wide range of machine 
learning techniques, such as maximum entropy models, 
hidden Markov models, AdaBoost.MH, support vector 
machines, conditional random fields (CRFs) and memory 
based models. Florian et al. (2003) tried to combine the 
results of four systems and reported that the robust risk 
minimisation model is the best option. According to this 
algorithm, the model was estimated on training data, by 
selecting the optimum class (entity type) for each word 
based on the words that appear in a window around the 
target word and a risk function which must be minimised 
for the selected class. One participant used the output of 
externally trained NER systems, though the rest of the 
systems attempted to use information from gazetteers and 
untagged data. 

Johannessen et al. (2005) described a work on NER for 
Scandinavian languages (Norwegian, Swedish, and Danish). 
During their research project, named Nomen Nescio, they 
used rule-based and statistical methods to develop named 
entity recognisers. To develop the six different NER 
systems that form the NN project, they used rule-based 
methods based on constraint grammars, as well as shallow 
parsing with context sensitive finite-state grammars, 
OpenNLP as a named entity recogniser based on maximum 
entropy, TiMBL as a memory-based learning mechanism 
and gazetteers. In order to handle multi-membered names, 
they used pattern matching, lexicons and context rules. 

An interesting approach was proposed by Szarvas et al. 
(2006) who introduced a multilingual NER system that 
identifies and classifies named entities in the Hungarian and 
English languages by applying AdaBoost.M1 and C4.5 
decision tree learning algorithm. Essentially, they handled 
the NER problem as a classification of separate tokens 
taking into account the relationship between consecutive 
words as well using a window of appropriate size. They 
used a pre-annotated corpus of business news articles with 
an inter-annotator agreement rate of 99.8%. 

Another interesting approach for annotating large 
corpora with NER tags is proposed by Richman and  
Schone (2008) who utilised the multilingual characteristics 
of Wikipedia in order to create a NER system that  
requires minimal human intervention. The proposed system 
identified words and phrases within the text that were 
potential entities, by using Wikipedia links. With the use of 
category links and/or inter-article links they categorised the 
entities found in one of the entity categories. For 
categorising non-English terms that had an entry in its 
language’s Wikipedia, they proposed two techniques: first, 
the title of an associated English language article is found 
by searching for a Wikipedia link beginning with ‘en:’. If 
such a title was found, then the English article was 
categorised and the assumption that the non-English title 
was of the same type as well was made. In the opposite case 
the category information and their English equivalents were 
used to decide. 

Part of the limited research on NER for Balkan 
languages is a preliminary investigation for the Turkish 
language by Celikkaya et al. (2013). Their research  

focused on NER in Turkish texts from different domains 
(twitter, forums and speech-to-text). The proposed system 
tokenises the data and then creates training/testing  
instances using the features extracted from an automatic 
morphological analysis process. The features employed are 
the stems of the tokens, their main POS-tags, the case 
marker and the availability of the proper noun tag. In order 
to deal with spelling errors, they created a text normaliser 
that pre-processes the input texts. The CRFs algorithm they 
use, combines hidden Markov models, stochastic grammars 
and maximum entropy Markov models. Initial results were 
promising but also uncovered the difficulty of NER in real 
(structured and unstructured) data and in Turkish and 
Balkan languages in general. 

Apart from modifying or extending methods that 
worked well in English to other languages, a significant 
amount of effort has been invested in extending NER 
systems to work on different types of text. Most systems 
were initially trained on corpora containing structured texts, 
where many NLP problems have already been solved 
manually [e.g., Stanford NER (Finkel et al., 2005) has been 
trained on the CoNLL-2003 corpus comprising of formal 
texts, where sentence splitting and tokenisation has been 
carried out by human annotators]. 

However, the rise of social media has brought forward a 
gargantuan amount of small snippets of casual noisy text 
such as Twitter posts and short messages. In this novel 
domain, systems trained on news articles and other types of 
structured text display an important drop in accuracy (Ritter 
et al., 2011). This drop can be attributed to the fact that 
important distinguishing features of named entities in 
formal texts, are not credible discriminating factors in 
informal texts. For example, capital letters in tweets are 
often used for emphasis and do not denote entities with the 
same probability as in formal texts. In order to tackle the 
problem of texts with informal language, several NER 
extensions have been proposed, for tweets (Li et al., 2012; 
Ritter et al., 2011; Locke, 2009; Liu and Zhou, 2013;  
Liu et al., 2012), e-mails (Minkov et al., 2005), etc. 

2.2 Entity level SA 
SA is defined as the task of classifying texts into categories 
depending on whether they express positive or negative 
sentiment, or whether they enclose no emotion at all. It has 
attracted considerable attention in recent years due to its 
direct applicability in real-world businesses, such as brand 
monitoring or prediction of election results. 

Researchers study the task at different levels of 
granularity, e.g., document level (Pang et al., 2002) or 
sentence level (Wiebe and Riloff, 2005; Wilson et al., 
2005), or for different kinds of text (Barbosa and Feng, 
2010; Hu et al., 2013; Boiy and Moens, 2009), e.g., tweets, 
movie reviews or forum posts. There are also studies in 
other languages apart from English (Boiy and Moens, 2009; 
Zhao et al., 2012; Atteveldt et al., 2008; Abbasi et al., 2008; 
Abdul-Mageed et al., 2011). Current approaches for SA fall 
under two main categories. The first category uses 
supervised machine learning and trains classifiers based on 
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features extracted from text (Engonopoulos et al., 2011; 
Mohammad et al., 2013; Pak and Paroubek, 2010; Socher  
et al., 2013). Then, the trained models predict sentiment 
classes for unseen text data. Supervised machine learning 
algorithms (e.g., support vector machines, naive Bayes  
and maximum entropy) have been proven effective for 
sentiment classification, but need a considerable amount  
of manually annotated training data. In unsupervised 
approaches sentiment lexicons (Hu et al., 2013; Turney, 
2002) are created or used in order to determine the 
sentiment of a text. They use a scoring scheme that 
considers the number of subjective words in the text and 
their polarity strength. These methods usually need minimal 
human effort, but are either only based on words included in 
lexicons and do not take into account the position of a word, 
or they need linguistic resources, such as WordNet, which 
may be language-dependent. 

Concerning SA at the entity level, we present in this 
section a number of proposed methods. ELS (Engonopoulos 
et al., 2011) is a method for entity-level sentiment 
classification, which uses CRFs to identify the sentiment of 
each word in a document and then determine the sentiment 
for each entity, based on where it appears in the text. The 
method aims at a fine-grained sentiment classification at the 
segment level and it takes into account the position of the 
words in text rather than only their appearance. Given that a 
sentence may mention more than one entities, a segment is 
considered a part of a sentence that mentions a single entity. 
The authors consider the entities mentioned in text and the 
corresponding segment known. Godbole et al. (2007) assign 
positive and negative opinions to entities with the use of 
sentiment lexicons, which are created by small seed lists 
and expanded through WordNet synonyms and antonyms. 
The authors assume cooccurence of an entity and a 
sentiment word in the same sentence to mean that the 
sentiment is associated with that entity. The prototype 
system by Nasukawa and Yi (2003) assigns sentiment 
expressions to subjects of interest, which may be entities as 
well, and classify the polarity of these expressions as 
positive/negative. Thus, the proposed method operates at the 
level of text fragment including a subject and not at the 
document level. The sentiment expressions associated with 
a subject are recognised with the use of a dictionary of 
sentiment expressions. Sentiment expressions consist of 
subjective words (positive/negative), part-of-speech tags of 
these words and a few syntactic patterns determining the 
subject and the object of the expression. Hence, the 
dictionary includes such sentiment expression patterns and 
the authors attempt to match these patterns with new text 
segments. 

 
 
 
 
 
 
 

Aspect SA is quite similar to SA at the entity level as it 
aims to assign a sentiment class to a specific target, even if 
this is a product feature. Hu and Liu (2004) propose a 
method for identifying product features in product reviews 
and then classifying opinion sentences about them into 
positive and negative. They define opinion sentences as the 
sentences that contain one or more product features and one 
or more opinion words. Opinion words are adjectives near 
the identified product features. To classify the polarity of 
these adjectives into positive and negative, the method uses 
a small seed list of words and WordNet. The seed list 
consists of known positive/negative words, whereas 
WordNet is used to provide synonyms and antonyms of 
words. The polarity of an entire opinion sentence is 
determined by the polarities of its opinion words. Popescu 
and Etzioni (2005) present OPINE, a system that also 
extracts product features from product reviews, recognises 
opinion phrases concerning these features and evaluates the 
polarity of the phrases as positive or negative. In order to 
identify the beginning of opinion phrases in sentences 
where product features are found, the authors apply 
extraction rules based on syntactic dependencies. The 
polarity of the identified opinion phrases is determined 
through a relaxation labelling technique that finds the 
semantic orientation of words in the context of given 
product features and sentences. A paper by Blair-
Goldensohn et al. (2008) aims at recognising aspects of 
services, e.g., for restaurants or hotels, and then 
summarising the positive/negative sentiments expressed 
about these aspects. So the task of the paper is divided into 
three subtasks: 

1 identification of subjective sentences and classification 
of these sentences as positive/negative 

2 identification of aspects of services 

3 summarisation of opinions for the aspects of the 
service. 

The first subtask combines both the creation of a sentiment 
lexicon based on basic seed lists as well as 
synonyms/antonyms of WordNet, and the training of a 
Maximum Entropy classifier with features based on the 
aforementioned lexicon and the overall review rating 
provided by the user. 

3 System design 
The architecture of the platform (see Figure 2) consists of a 
set of mechanisms that implement the whole text processing 
pipeline starting from data fetching from the distributed 
sources, storage, summarisation and analysis of textual data 
and finally synthesis and representation of the extracted 
knowledge back to the end user. 
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Figure 2 Platform architecture (see online version for colours) 

 

On the bottom layer of this architecture, we have the data 
acquisition modules. A large number of distributed crawlers 
accesses and processes content from different type of 
sources (news sites, blog feeds, social media APIs, etc.) in 
order to collect the desired data (comments, article content, 
etc.). The crawlers differ from source to source, because the 
data sources can vary from social media to news portals and 
forums. For example, data acquisition from social media 
(streaming data) is mainly done using the ‘streams’ they 
provide via their APIs. A similar strategy is followed for 
feeds and channels of cloud based CMS or blog services 
(e.g., blogspot) that helps us get a large amount of ‘clean’ 
data from web sources. In the case of news sites and portals, 
data fetching is performed by a complex system of hybrid 
web crawlers. The news crawlers combine manually defined 
parsing rules and automatic extraction of page wrappers 
(data extraction rules), which allow quick collection of 
specific content (e.g., article title, body, media) from 
multiple sources (Varlamis et al., 2014) (observation data). 
Finally, we analyse information concerning how our users 
interact with the collected content and services (interaction 
data), and deliver personalisation services and advanced 
analytics and alerts to the users. Personalisation is achieved 
through a combination of usage and content analytics and 
personalised alerts through a combination of NER, SA and 
complex event processing based on rules. 

The next layer comprises the data storage mechanisms. 
Because of the different nature of information we collect 
and extract (i.e., full text, metadata, entities, sentiment), 
information is stored and indexed on multiple different 
types of databases. This allows us to get the maximum out 
of each DBMS and be able to quickly deliver the 
appropriate information services. For this reason, we utilise 
both SQL and no-SQL databases. In both cases we use 
database clusters in order to support the huge amount of 
data that we collect on a daily basis. The SQL databases 
(RDBMS cluster) are used for storing the collected data and 
all related metadata. The noSQL database is used for storing 
and indexing all the information necessary for supporting 
fast search and fast data analysis. With the Elasticsearch, 
Logstash and Kibana (ELK) Stack we are able to define 

complex analytics, which are applied in real-time on the 
data we collect. At the same time, we provide full access to 
the complete set of information we collect using the 
RDBMS storage. 

One layer above, are the language-agnostic text mining 
modules (NER, SA, text clustering and classification), 
which undertake the detailed analysis of the collected 
textual data and the filtering and association of extracted 
information. The processing pipeline applies a set of 
algorithms to the texts of a stream (e.g., filtering, data 
cleaning and validation, similarity measurements, clustering 
and categorisation) and extracts a lot of useful information 
that is stored in the RDBMS and NOSQL cluster. The first 
two procedures, are done together as we expect the results 
of one of them (SA) to be applied to the results of the other 
(NER). Text clustering and classification is critical for our 
platform, since it allows removal of redundant information 
(e.g., repeated/copied news articles) and provides a better 
organisation of news content. After the completion of this 
procedure, we expect to have combined, connected and 
‘clear’ data, which can be used for presentation or for 
analytics. 

The top layer of the system comprises the modules that 
perform an even deeper analysis of the extracted and 
organised information and produce more qualitative results 
for the end-users of the system. These modules deliver the 
information and services to be presented to the end-users, 
such as named entity mentions analytics and reports, alerts, 
an API for news and related content, which is used by our 
platform but also by third party services. 

This paper focuses on the NER and SA module, so from 
this point forward we continue with its description. In the 
visualisation of the SA and named entity extraction module 
presented in Figure 3 we can distinguish three main 
components. At the top of Figure 3 we have the main 
infrastructure, in blue background, comprising the 
subsystems that crawl the web for content, perform the 
necessary preprocessing (cleaning, filtering, clustering and 
classification) of text streams’ contents and store the results 
to the data storage level. 

Figure 3 The pipeline for NER and SA (see online version  
for colours) 
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On the bottom right of Figure 3 (in red background) is the 
NER module. The system accepts a batch of raw texts 
combined with metadata about the batch, such as language 
and source, in JSON format. Subsequently, it performs 
sentence splitting, tokenisation and NER in this order. The 
model contains information about which model to use for 
each language and task, since different languages and types 
of text are better processed using different models (e.g., 
trained with documents in the same language and for the 
specific task). Each model is loaded once, runs on a separate 
Java virtual machine (JVM) and employs a configurable 
number of threads. The results are returned in JSON format 
and contain information about sentences, their positions in 
the text, the entities and their positions in the sentences. 

On the bottom left of Figure 3 (in green background), 
we have the SA module. The SA module takes as input a 
batch of raw texts, as well as their language and source, in 
JSON format. It first forwards the input data to the NER 
module, in order to obtain the sentences of the text, the 
entities mentioned in each sentence and the types of the 
entities (e.g., person, location). After the response by the 
NER module, the SA module identifies the sentiment 
expressed for each entity mentioned in the sentence. Its 
output is also in JSON format and contains the sentences of 
the input text, the entities mentioned in each sentence along 
with their types, the sentiment class for each entity in a 
sentence and the overall sentiment class of each sentence. 

The architecture of the SA module consists of two main 
components. The first component is the web service that 
receives requests by users and communicates with the NER 
module. The second component is an application that 
implements the SA method and provides sentiment 
predictions for input data. The communication between 
these components is done through messaging. Specifically, 
the web service publishes messages, including input text 
and the response by the NER module, to a message queue. 
The application threads act as listeners to the queue and 
process the messages to produce sentiment predictions. 

Finally, the output JSON is inserted in another queue and is 
returned back to the user. 

4 Implementation 
In this section we elaborate on the methods, algorithms and 
models that we employ for detecting named entities in texts 
and assigning sentiment labels to them based on text 
segments associated with them. We also provide details 
about the software, linguistic tools and resources that we 
use to implement the two pipelines. 

4.1 Implementation of NER approach 
For the extraction of named entities from text, we capitalise 
on the use of an open source library for natural language 
processing, namely OpenNLP. Compared to other solutions 
such as Stanford NER or NLTK NER, OpenNLP better fits 
the architecture, since it is written in Java, it is open source 
and provides a common suite for many text analysis tasks. 
OpenNLP is a machine learning based toolkit for natural 
language applications. It supports the most common  
NLP tasks, such as sentence segmentation, tokenisation,  
part-of-speech tagging, named entity extraction, etc. 
OpenNLP provides two alternative machine learning 
methods, maximum entropy models and perceptrons (neural 
networks) depending on the NLP task. 

In simple words, both methods solve complex problems 
as classification tasks. They use an extended set of features 
that is extracted from the textual content and for this reason, 
for each task, they require a training set which comprises 
properly annotated documents or sentences. For example, 
the sentence segmentation model is trained using a set of 
sentences, one sentence per line, and trains a probabilistic 
model that learns whether a punctuation mark is most 
probably a sentence splitting mark or not. A similar 
approach is followed in other tasks. 

Figure 4 Online application for creating the training corpus for the sentence splitter and the tokeniser (see online version for colours) 
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In the case of news processing, we use OpenNLP in three 
different tasks: sentence splitting, tokenisation and NER. 
Since we want to quickly deploy our solutions for different 
languages, it is important for us to be able to quickly create 
the appropriate (annotated) training corpora for any new 
language. We attempt to solve this issue, using massive 
open source data and collaboratively created text corpora, 
which are usually semi-structured and rich in semantics, so 
we can easily transform them to training data for our 
models. For the cases that these data are not adequate, we 
have created a set of annotation tools, that allow human 
annotators to create additional training samples. In Section 5 
we provide more details on the performance of models 
which have been trained using automatically and manually 
annotated datasets. 

4.1.1 Sentence splitting and tokenisation 
Sentence splitting and tokenisation along with part-of-
speech tagging are the most popular pre-processing tasks 
that precede any other text mining or NLP task. They play 
an important role in the complexity of the solution that 
follows them, since they limit the context to a sentence level 
and they affect the quality of any following task since they 
split each sentence into lexical tokens (words) and allow for 
word-based approaches to be applied. 

Although OpenNLP provides pre-trained models for 
sentence splitting and tokenisation in English and a few 
more languages, it still lacks support for Balkan languages 
or even Turkish. One may think that sentence splitting is 
similar across languages. This is not the case, since for 
example the semicolon in English (;) works as a question 
mark in Greek. Even worse, the period symbol (.) can 
denote sentence termination or not depending on the text 
that appears in front of it; for example in Mr., Dr. or B.B.C. 
it is simply part of the abbreviation and not a sentence 
termination mark. The list of abbreviations differs across 
languages and is hard to compile one list for each language. 
Finally, creating a single model for a language is not always 
correct, since the same language (e.g., English) may have 
different syntactic rules in different contexts. This is the 
reason that the Stanford POS Tagger, recently released a 
second POS tagging model for informal English (e.g., for 
twitter texts) which has been trained on different text 
corpora. 

The advantage of machine learning is that it allows us to 
create any model using a properly annotated training corpus. 
For example we can build a sentence splitting model by 
creating a set of sentences (one per line – in the case of 
OpenNLP) that contain punctuation marks. Finding or 
automatically creating such a dataset for a language is not 
an easy task. For this reason, we developed a module that 
takes as input Html content from news articles and creates a 
training dataset for sentence splitting, taking advantage of 
HTML template information and the use of specific tags 
(e.g., breaks and paragraph marks). We also developed a 
semi-automatic solution, an online annotator for creating 
training examples for sentence splitting and tokenisation 
from raw text. The online annotator (see Figure 4) takes a 

raw text as input and allows users to add sentence splitting 
and tokenisation markup. It also offers an auto-annotate 
mode, which employs the models trained so far and allows 
users to correct any errors. 

4.1.2 Named entity recognition 
OpenNLP takes an annotated text corpus as input and 
creates a NER model as output. Any raw text must first be 
converted to the OpenNLP name finder training format, 
which is one sentence per line. The sentence must be 
tokenised and contain spans which mark the entities. If the 
training file contains multiple types then the created model 
will be able to detect multiple types. However, it is 
recommended to only train single type models. The most 
widely supported entity types in NER are person, location 
and organisation. In the case of the analytics services, we 
also examine products as entities. As a result, we have to 
create four sets of training texts for each language (one 
model per entity type). 

For the creation of training corpora we implemented 
different alternatives. Others use crowdsourcing open data 
and manually assigned semantics, others are based on 
regular expressions and others are based on manual 
annotations. In the first two cases, our input is Wikipedia 
and DBpedia. The advantage of this combination is that a 
Wikipedia corpus is available in many languages and 
comprises many semi-structured texts, where named entities 
are properly annotated within the text. For example in the 
following sentence, the double braces denote a link to a 
page for this entity, while the pipe symbol separates the 
actual entity from the string which represents it in the text. 

“iPhone” is a line of [[smartphone]]s designed 
and marketed by [[Apple Inc.]] They run 
Apple’s [[iOS]] mobile operating system. The 
[[iPhone (1st generation)|first generation 
iPhone]] was released on June 29, 2007 

In addition to this, DBpedia provides information on the 
type of these entities. More specifically, DBpedia contains a 
long list of persons, locations and organisations for many 
languages and each entity can be traced to Wikipedia 
sources. In the third case, manual annotation is performed 
for languages that do not have a Wikipedia and DBpedia 
corpus or for the case when we want to add more training 
instances to the model. 

4.1.2.1 Training corpus creation 
When the NER mechanism is developed for a new 
language, we care for a quick deployment with minimum 
resources spent on text annotation. For this reason, the 
mechanism that creates the wikimodel fetches the DBpedia 
entities for each of the types of person, location and 
organisation and adds to these lists a list of products 
manually created for the target language. The mechanism 
then processes all sentences of Wikipedia that contain these 
entities. With a set of regular expressions and text 
formatting instructions we are able to automatically convert 
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the Wikipedia corpus to an input annotated training corpus 
for OpenNLP. Then using OpenNLP training we can create 
the four models for the target language. The whole pipeline 
is depicted in Figure 5. 

Figure 5 Detailed view of the NER training pipeline (see online 
version for colours) 

 

The advantage from the use of Wikipedia manual 
annotations is that they provide entity mentions with high 
accuracy, since all the entities are referenced with a specific 
syntax in wiki markup language. However, the recall is 
lower. For example, while an entity may be mentioned 
dozens of times within a Wikipedia page, some of the 
mentions are not marked properly in the Wikipedia source 
code. As a result we have many false paradigms (false 
negatives) in the training set, which affect the model 
performance. Since we only keep the sentences that contain 
explicitly marked entities, we reduce the number of false 
negatives. In order to increase the amount of training data 
from Wikipedia we used two alternatives: 

• Regex model: The first alternative increases the recall 
of entities in Wikipedia pages by using regular 
expressions in order to markup texts. In simple words, 
the method locates consecutive words that start with a 
capital letter, e.g., Simon P. Laplace or word sequences 
in which stopwords may occur between names,  
e.g., Joan of Arc. The method creates a list of potential 
entities and then examines this list against the lexicons. 
We perform a case sensitive exact search in the 
lexicons using any accents supported by the language. 
This is important since in some languages the use of 
accents may result in different words. For example 
Αθήνα is the name of the city of Athens in Greek, 
whereas Αθηνά stands for the female name Athena. 

• Ngram model: The second alternative performs a looser 
matching of potential entities against lexicon entries. It 
uses a hybrid trie-index structure for the lexicon entries, 
in which each multi-keyword term in the lexicon is split 
into the words that it contains. In the first level of the 
index we put all the words that appear in the beginning 
of lexicon terms. In the second level, the words that 
appear second in a lexicon term and so on. In a word at 
any level in the trie-index, we keep a Boolean that 
indicates whether the word is the last word of a term in 
the lexicon (terminal word). The ngram matching 
algorithm looks at the first level of the index and if it 
finds a match then continues to the lower levels until 

the longest matching is found. The last word matched 
must also be marked as a terminal word. For example, 
if we have ‘John Doe’ and ‘Mary Brown’ in the lexicon 
the ngram model will also match ‘John Brown’ and 
‘Mary Doe’. 

We must remind here that the method is used for 
marking entities in Wikipedia texts and thus creating an 
automatically annotated text corpus. So it is reasonable 
to mark entities that do not necessarily correspond to 
Wikipedia entries but resemble to proper names for 
locations, person or organisations. As a result, the 
method further increases recall of proper names 
detection in Wikipedia, since it positively detects more 
entity references, but also introduces some false 
positives in the training dataset. 

• Manual annotator: In order to further improve the 
quality of our training dataset, and consequently the 
quality of the NER model, we developed a manual 
annotator. 

The annotation tool, illustrated in Figure 6, 
automatically performs sentence splitting and 
tokenisation, using the models we presented in  
Section 4.1.1 and allows users to quickly tag entities of 
different types in the text. It also allows users to assign 
sentiment (positive, negative or neutral) to the tagged 
entities. The annotator offers an automatic annotation 
option, which employs the models we trained with 
Wikipedia documents and further accelerates the 
annotation process. As a result, we are able to annotate 
a few hundreds of articles and create an annotated 
corpus for NER and SA comprising thousands of 
sentences and entities within a few hours. 

Figure 6 The NER and sentiment annotator application  
(see online version for colours) 

 

4.1.2.2 NER model usage 
Any new text fetched by the crawling mechanisms is 
processed by OpenNLP and annotated for entities of all 
types. Since OpenNLP does not create a single model for all 
entity types, we created a single interface that integrates the 
answers of the different entity models. We modified the 
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OpenNLP code in order to apply the four models in a row 
and consequently merge the resulting entities. When two 
entities of different type overlap, we keep the one with the 
highest probability or in the case of a tie, the lengthiest one. 
All the implementation was wrapped in a jar file which was 
further accessed using a the Python library jnius by the NER 
service which was implemented in Python. 

In order to further increase the recall of the machine 
learning approach, we passed the texts through a second 
filter which automatically marks any entity found in the text 
that belong in the lexicon (using exact match). This method 
adds an overhead to the pipeline since every text is scanned 
a second time in a token-by-token manner, but it 
significantly adds to the NER model recall. 

4.2 Implementation of SA approach 
SA is treated as a classification problem into three classes: 
positive, negative or neutral. Neutral is used for factual 
references of an entity, whereas positive and negative 
classes are used for opinions. Although the method receives 
sentences as input, it operates at the entity level, meaning 
that if the sentence mentions more than one entities, the 
system will assign a sentiment class for each entity and not 
just for the entire sentence. The approach followed by the 
SA module consists of two main steps: 

1 split of the sentence to segments, with each segment 
mentioning a single entity 

2 assignment of each segment to a sentiment category. 

4.2.1 Split of sentence to segments 
We assume that the entities of the sentence are known and 
in this case provided by the NER module of the pipeline. 
We split each sentence into segments spanning from entity 
to entity, with each segment containing a single entity. 
Suppose we have the sentence ‘Robbie Williams was 
impressive in Athens yesterday, whereas the Black Keys 
concert we went to a month ago was mediocre’. The system 
will automatically split this sentence to the segments 
displayed in Figure 7. We observe that the first segment 
spans from the beginning of the sentence to the second 
identified entity. The second segment starts at the second 
identified entity and extends until the third entity, whereas 
the third part is from the third identified entity up to the end 
of the sentence. We perform SA to each of the generated 
segments in order to predict a sentiment class for each 
entity, as displayed in Figure 8. If the sentence involves 
only one entity, we perform SA on the whole sentence. The 
idea behind this technique is that subjective words 
concerning an entity are probably in small proximity from 
the entity reference. The same concept is behind techniques 
that use a fixed window size to define phrases around a 
target. Because we deal with different types of documents, it 
is hard to choose a window size that gives good 
approximate results for both short and longer sentences. 
Thus, we prefer to use the distance between entities to set 
approximate boundaries between the segments concerning 

different entities in a sentence. Syntantic analysis is 
probably the most accurate way to discover dependencies 
between words and entities. Nevertheless, it requires 
syntactic parsers, which are not available in every language 
and may need different tuning to address both formal and 
informal text effectively. Given the multilingual perspective 
of the platform and the heterogeneity of the processed 
documents, the requirement of syntactic parsers could be 
quite restrictive. 

Figure 7 Segments generated from a sentence 

 

Figure 8 Sentiments generated for each segment (see online 
version for colours) 

 

4.2.2 Prediction of sentiment 
The presented approach for sentiment classification  
uses a supervised machine learning algorithm and  
therefore it needs training data to be initialised. However, 
text data cannot be processed directly by machine learning 
algorithms and we need to transform them to numeric 
feature vectors. In many cases to achieve good performance, 
we also need to perform preprocessing or normalisation 
techniques on data. We describe the techniques/algorithms 
used in each step of our system in the subsections below. 

4.2.2.1 Data preprocessing 
Negation is an important aspect of the semantics of a text. 
We aim to identify negated context using patterns, which 
start with a negation word and end with a punctuation mark. 
The definition of negated context is based on Mohammad et 
al. (2013). For every sentence we store whether a negated 
context is identified or not. At the end of the process, we 
use this information to determine whether to alter the 
sentiment label from positive to negative or vice versa. We 
also tried more sophisticated techniques, which involved 
patterns of negation words and part-of-speech tags [e.g., (do 
not)<verb>], and reversed sentiment polarity only if the 
pattern negated a subjective word found in training data or 
lexicons used for feature extraction described below. 
Although these techniques increase average F1 by about 
2%, they also require three times more processing time. As 
time performance is critical for the platform, especially 
during rush hours, we prefer not to increase processing time 
considerably for negation identification and use a more 
coarse-grained method. 

Articles from news websites are usually well-structured 
and without typos, unlike more informal text, such as social 
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media and forum posts, which may be terse or contain 
specific abbreviations and misspellings. Prior to creating 
numeric feature vectors, we preprocess data to remove noisy 
elements and reduce the counter effects of inflection and 
omission of stress marks. Most of the noisy elements are 
met in informal text, such as social media or forum posts, 
and are less present in well-written documents, such as 
news websites’ articles. We consider the following elements 
as noise: 

1 URL links, because we do not follow them and analyse 
their content. 

2 Mentions of users and the abbreviation RT in case of 
Twitter. RT means that a tweet is a retweet of another 
one. 

3 Stop words, which are extremely common words 
including articles and pronouns. 

In many languages, such as Greek, accent marks are used 
over vowels to denote where a word is stressed. However, 
users of social networks and forums often forget to add 
these marks or they add them at the wrong syllable. To 
avoid misspellings due to this reason, we prefer to also 
remove accent marks from words. Moreover, repetitive 
vowels are reduced to one and repetitive consonants are 
reduced to two. Another preprocessing step is the grouping 
of emoticons in two categories, positive and negative, and 
the replacement of the members of each category with a 
single emoticon. Positive emoticons are replaced with ‘:)’, 
whereas negative are replaced with ‘:(‘. 

Last but not least, we use stemming to address the 
inflective nature of languages. In some languages, such as 
Greek, verbs and adjectives are inflected for person, number 
and gender, which affects mostly the suffixes of the words. 
This variance in suffixes affects the effectiveness of 
produced features and as a consequence the classification 
performance also decreases. Therefore, we assume that 
stems of words are usually enough to indicate the sentiment 
of a text. We use the implementations of stemmers provided 
by Apache Lucene (https://lucene.apache.org/). 

4.2.2.2 Feature vectors extraction 
Numeric feature vectors consist of bag-of-words and 
lexicon-based features. Bag-of-words features are unigrams 
extracted by the vocabulary of the training data. Each 
feature of this type has value 1 or 0 depending on whether 
the unigram is present in the instance or not. The values for 
the lexicon features are determined using two lists of 
subjective terms. The first one includes positive words, 
whereas the second contains negative words. Two lexicon 
features are extracted based on the number of words in the 
instance from the positive and negative list. A third feature 
of this type is also added storing the difference between the 
values of the former lexicon features. As the number of  
bag-of-words features is usually quite large, we use 
information gain to keep a subset of the most informative 
ones. The implementation of information gain algorithm is 
provided by the Weka Data Mining software (Hall et al., 
2009). 

4.2.2.3 Sentiment classification algorithm 
After preprocessing of data and extraction of feature 
vectors, we train a classification model. Training examples 
are sentences or short texts, such as tweets, labelled by 
human annotators with the dominant sentiment class. By 
dominant sentiment class, we mean the strongest opinion 
expressed for an entity in the sentence. For example if we 
have a sentence with two entities, a positive opinion for the 
first entity and factual information for the second, the 
annotators should label this sentence as positive. In cases 
where all expressed sentiments are of equal strength, we 
base the sentiment class arbitrarily on the first entity. As a 
result training instances are annotated at the sentence level. 
However, the sentiment predictions generated by the trained 
model for unseen data are at the entity/segment level, as 
each sentence has been first split to as many segments as the 
number of entities identified in it by the NER module. 

Figure 9 Results from the use of the automatically trained models, (a) recall and precision for the ngram automatic annotation model  
(b) recall and precision for the regex automatic annotation model (see online version for colours) 

 
 (a) (b) 



 PaloPro: a platform for knowledge extraction from big social data and the news 15 

For the SA module we chose SVM and specifically the 
liblinear implementation (Fan et al., 2008). Liblinear is a 
linear classifier. We define the regularisation parameter (C) 
using cross validation. When the classifier finishes giving 
predictions for the input data, we check for each instance 
whether negation patterns were identified during 
preprocessing. If negation was identified in an instance and 
its sentiment prediction is positive, we reverse it to negative 
and vice versa. 

As the prior polarity of words in lexicons is verified 
manually, we also train a model in which the weights for 
lexicon features are equal to two times the maximum weight 
of the rest of the features. The purpose of this amendment is 
to give lexicon features a more important role in sentiment 
prediction, since the polarity of unigram features extracted 
from training corpus may be biased due to specific 
examples. We will refer to the model described above as SA 
model and to this one as SA_boost model. 

4.2.2.4 Language configuration 
Given the preprocessing and feature engineering techniques, 
which were described above, specific resources are 
important when the SA module needs to handle a new 
language. The only requirement is the existence of training 
data, in order to create a trained model for SVM. All other 
resources are optional, as they may be unavailable for a 
language and difficult to construct from scratch. Optional 
resources include stemmers, subjective lexicons, 
preprocessing code and code for negation identification. 
Preprocessing and negation identification code should be 
straightforward, nevertheless the user is still able to omit 
them. The user configures these settings through a 
configuration file. Then it maps this file to a language in 
another file that acts as an index for languages and 
configuration files. Stemmers, preprocessing and negation 
identification must be Java classes that implement a 
corresponding interface, and are stored in different 
packages, with one package per language. Lexicons are text 
files including one word per line and possibly a score 
assigned to each word separated with a tab. These scores 
denote the strength of the sentiment expressed by a word. In 
a simple scheme where there is no information about the 
strength of the sentiment, the scores may have only two 
values, 1 for positive words and –1 for negative ones. 

When texts are submitted, the SA module checks the 
language metadata of the input and uses the index to map 
the language to a configuration file. By reading the 
respective configuration file, the module is able to apply the 
correct preprocessing and feature engineering techniques on 
input texts. The applicability of an earlier version of the SA 
module to other languages is also presented in experiments 
in Makrynioti and Vassalos (2015). 

5 Evaluation 
In this section, we present some initial results from the 
application of our modules to validation datasets. 

5.1 NER performance 
This section tests the performance of the NER module 
against an evaluation dataset, which comprises texts in 
Greek collected from news sites (100 texts), twitter (102 
tweets) and Facebook (113 posts). This resulted to 1,366 
sentences in total. The performance of the models, which 
have been created using the automatically annotated 
Wikipedia corpus and DBpedia (regex and ngram models) 
are depicted in Figure 9. The four different pairs of columns 
in the results correspond to the matching method we used 
for evaluation. The strict matching method counts a hit 
when the correct entity was marked exactly in the text and 
with the correct type. The loose method counts a hit when 
the entity was partially marked (e.g., only the last name of 
the person, or the entity and a neighbouring word) and the 
type was marked correctly. The colourblind method counts 
all exact entity matches that probably are assigned to wrong 
entity types. This metric is useful, since it is easy to confuse 
between a company and a product or in some cases between 
a name and a location. Finally, the haywire method counts 
all partial matches even when the entity type detected was 
not correct. From the results, we can see that in all cases, 
both methods have a fair precision but significantly low 
recall. The low recall is mainly due to the partial annotation 
of Wikipedia entities, which was not fully treated by the 
regex and ngram annotation methods. 

In order to compare the performance of automatically 
created and trained models to that of manually annotated 
corpora, we trained the so-called human NER models using 
a manually annotated set comprising approximately 2,000 
texts from all types of sources. Finally, we managed to 
boost recall without losing in precision, by adding the 
lexicon-based annotation, which marks any entity that has 
not been marked by the models but appears in the lexicon. 
We took advantage of this increase in recall and were more 
strict in the use of the machine learning by adjusting a 
threshold parameter from –3 (default) to –1. This threshold 
defines which assignments will be kept in each iteration of 
the MaxEnt algorithm. Less negative values correspond to 
more confident assignments. Figure 10 presents the results 
of the human model with and without the addition of a 
lexicon. From the results we can see that the use of 
manually annotated corpora raised the precision above 80% 
in some cases and at 70% in the case of strict matching. The 
use of lexicons helped us improve the recall of our methods 
by almost 10% in all cases. 

A comparison across the different types of text sources 
reveals that the performance on Facebook posts and Twitter 
texts is worst than that of articles, which can be explained 
by the frequent use of informal language in the two types of 
media. 

5.2 SA performance 
We also present some initial results from the application of 
the SA module on short texts, such as tweets, and larger 
texts extracted from sites and blogs. We use two validation 
datasets, one consisting of 100 sentences from tweets  
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and short Facebook posts, and another comprising of  
97 sentences from news articles and blog posts. The former 
dataset mentions 141 entities, whereas the latter includes 
145 entity references. Note that the number of sentiment 
predictions produced by the classifier corresponds to the 
number of entities mentioned in the dataset, so in these 
experiments it would be 141 for the dataset of sentences 
from short posts and 145 for the dataset of sentences from 
larger texts. 

The performance of the SA model with equal weights 
for all features regarding short texts from Twitter and 
Facebook is depicted in Figure 11(a). The three different 
columns in the results correspond to precision (purple), 

recall (green) and F1 (light blue) evaluated for each 
sentiment class. We can see that precision of positive and 
negative classes is much higher than neutral class, whereas 
the results for recall are the exact opposite. This behaviour 
indicates that many positive and negative predictions of the 
module are precise, whereas a number of subjective tweets 
are recognised mistakenly as neutral. Experiments on 
sentences from sites articles and blog posts are presented in 
Figure 11(b). Here we can observe a drop in precision for 
positive and negative classes, as sentiment is expressed 
more implicitly in sites and blogs than in social media. 

 

Figure 10 Results from the models trained on human annotated corpora with and without lexicons, (a) recall and precision without 
lexicons (b) recall and precision with lexicons (see online version for colours) 

 
(a)       (b) 

Figure 11 Results on short and larger texts with the SA model (all weights are equal), (a) results on tweets and short Facebook posts  
(b) results on site articles and blog posts (see online version for colours) 

  
(a)      (b) 
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Figure 12 Results on short and larger texts with the SA_boost model (increased weights for lexicon features), (a) results on tweets and 
short Facebook posts (b) results on site articles and blog posts (see online version for colours) 

  
(a)      (b) 

 
In Figure 12(a) we present the performance of the SA_boost 
model with boosted weights for lexicon features on tweets 
and short Facebook posts. The increase in weights of 
lexicon features results in significantly better precision and 
recall for negative class. The F1 for the other classes is also 
a bit higher than in Figure 12(b). On sentences from articles 
the boost of lexicon features does not affect performance so 
much. We can see an increase in all metrics for positive 
class, but this does not apply for the other two classes. Since 
sentiment is usually more implicit in such types of text, it is 
expected that words with known prior polarity may not help 
that much. 
5.3 Time performance 
In this section we measure the time performance of our 
pipeline, providing evidence separately for the NER and SA 
modules. We report on the time needed for training the 
model and the time needed for processing an increasing 
amount of content. The datasets that we used are in different 
languages (i.e., English, Greek, Serbian and Turkish) in an 
attempt to demonstrate the ability of our platform to handle 
multilingual content and also measure the effect of the size 
of models in the performance of the system. Finally, we ran 
our experiments on a Linux server with Intel Xeon CPU at 
3.50 GHz with four cores, and 32 GB memory, and we use 
different setups that either exploit or not the multithreading 
capabilities of the pipeline. 

5.3.1 SA time performance 
In order to evaluate the performance of the SA module in 
training models of various sizes, we run experiments using 
datasets of different sizes in three different languages:  
English, Greek and Serbian. We used a small manually 
annotated dataset in Serbian of 1,572 sentences and two 
much larger datasets for the Greek and English languages 

comprising 1,000,000 and 1,600,000 instances respectively. 
The Greek dataset was automatically created to be  
used only in time performance tests by assigning a 
sentiment class randomly to each instance, whereas  
English data were downloaded from the Sentiment140 
(http://www.sentiment140.com/) API and include only 
positive and negative tweets. Table 1 depicts the time 
required for creating SA models from the respective training 
data in the three languages, which is less than a minute for 
the small corpora, and reaches a few hours in the case of the 
large training corpus in English and Greek. 

Figure 13 Response time per number of threads (see online 
version for colours) 

 

In the second experiment, we test the time performance of 
the SA module in predicting sentiment for new data. We 
used a Greek model extracted from 8,000 manually 
annotated instances and tested on 30,694 sentences. In 
Figure 13 we present the number of sentences processed by 
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the SA module per second (module’s throughput). This 
number is strongly affected by the number of available 
processing cores, so we display results using a varying 
number of threads. In the results, we observe that even in 
the single-threaded mode, the SA module is able to process 
a large number of sentences per second (more than 1,000 
sentences per second). We observe that throughput is more 
than three times higher when using four threads on a 
machine of four CPU cores compared to using a single 
thread. However, depending on the available CPU cores, 
after a number of threads the overhead of creating and 
managing new ones increases considerably. Thus the 
number of sentences/sec processed by eight threads 
increases a little compared to four threads on a machine 
with four CPU cores, but the difference is significantly 
higher when going from one to two threads or from two to 
four threads. 

Table 1 Training time on data from three languages 

Language (number of instances) Time (hours) 

Serbian (1,572) 0.004 
Greek (1,000,000) 2.78 
English (1,600,000) 4.78 

5.3.2 NER time performance 
In order to evaluate the performance of the NER module, 
we ran similar experiments using corpora of different sizes 
for training and annotation. In the case of the NER module, 
we train four separate models for each language in order to 
identify locations, organisations, products and person 
names. For the experiments we use Wikipedia as a text 

source and DBpedia as a lexicon source as explained in 
Section 4.1.2 and we evaluate the system performance for 
the English, Greek and Turkish language. All the times 
reported in Tables 2 and 3 are measured on the same 
machine as before but using the single thread version. This 
means that the throughput can be three to four times bigger 
if we take advantage of the four CPU cores. 

The process for the creation of NER models as 
explained in Section 4.1.2 begins with the annotation of the 
Wikipedia corpus with the entities of a certain type as listed 
in DBpedia. Then from all the sentences in the Wikipedia 
corpus we keep only the sentences that contain at least one 
entity of this type and using this set of sentences we train 
our model, which is specific for this language and the 
respective entity type. This process is repeated for the four 
entity types of interest. 

It is obvious from the numbers presented in Table 2 that 
the size of the English Wikipedia corpus is much bigger 
than that of other languages. Furthermore, we see that the 
number of entities and sentences extracted as well as the 
time it takes to label the sentences is proportional to the size 
of the corpus. As a consequence, the processing time and 
the size of the models for the English language are much 
bigger. Table 2 presents the number of entities extracted 
from DBpedia for each type of entity and each language, the 
number of Wikipedia sentences that contained an entity of 
that type, the time needed for training the respective model 
using OpenNLP and the size of the binary model that was 
created. We trained the model on all the sentences extracted 
to check scalability, however, in practice especially for the 
English dataset, it would be wise to feed the training 
algorithm with an increasing subset of the data until the 
model performance no further improves. 

Table 2 Statistics for NER models built from Wikipedia for English, Greek and Turkish 

 Location Organisation Person Product 

Number of entities added to lexicon 617,537 202,636 544,497 41,847 
Number of sentences extracted 3,574,287 2,520,794 2,684,434 145,227 
Model train time in seconds 9,499.9 7,264.5 8,155.1 366.9 
Model size in megabytes 68 48 64 16 

(a) English 

 Location Organisation Person Product 

Number of entities added to lexicon 5,736 1,724 5,259 877 
Number of sentences extracted 103,522 14,209 19,484 2,051 
Model train time in seconds 327.9 35.5 55.2 4.5 
Model size in megabytes 5.3 0.94 1.5 0.15 

(b) Greek 

 Location Organisation Person Product 

Number of entities added to lexicon 10,511 6,071 22,361 643 
Number of sentences extracted 102,086 56,960 73,154 1,041 
Model train time in seconds 242.6 103.9 148.8 1.3 
Model size in megabytes 4.7 2.5 4.1 0.06 

(c) Turkish 
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Table 3 Wikipedia statistics for English, Greek and Turkish Wikipedia 

 English Greek Turkish 

Corpus size (gigabytes) 51 1.2 1.7 
Corpus size (sentences) 50,560,419 2,053,992 4,900,147 
Total NER annotation time (seconds) 13,481 198 326 
Average sentence length in chars 132 142 111 
Throughput (sentences per second) 77 265 294 
Throughput (kbytes per second) 9.94 36.76 31.88 

 
In order to evaluate the performance of the NER module in 
annotating new corpora, we used once again the raw 
Wikipedia corpus in the same language. This time, the 
annotation was done using the trained NER models from the 
previous steps. Results in Table 3 show the size of the 
corpus we annotated and the total time we needed for the 
annotation. It is indicative that we need three and half hours 
to annotate the full English Wikipedia corpus for named 
entities using only one CPU. Using the four CPUs and more 
threads, it is possible to process the 51 Gbytes dataset in 
less than one hour. From the total NER annotation time and 
the corpus size in sentences we get an estimate of the 
module throughput performance, which varies significantly 
between languages. It is obvious that the size of the 
Wikipedia corpus varies significantly between languages. 
We also notice a difference in the average sentence  
size, which also affects the NER module throughput 
performance. The differences in performance are also due to 
the larger number of features used in OpenNLP when 
trained over a much larger corpus, as well as the larger 
lexicon that is used. 

6 Challenges 
6.1 Multilingual content 
The biggest challenge for the solutions that we develop for 
detecting entities and sentiment is that they must be 
language agnostic. 

As far as it concerns NER, the most promising language 
independent technique is the statistical learning technique of 
maximum entropy (Sang and De Meulder, 2003; Curran and 
Clark, 2003) and the hidden Markov models and their 
variations (Zhou and Su, 2002). In our approach, we employ 
the maximum entropy model, which is a supervised 
technique that requires a training dataset for each language 
annotated with entities of different type. It is important to 
annotate all entity occurrences within the training set and 
provide a balanced set with equal number of entities from 
each category. It is also important, to train different models 
for each different language style (for example a different 
model for tweets and a different model for news articles). 
The large number of different language styles (even 
newspapers do not all use the same writing style) and the 
continuous domain shift in the sphere of news (new topics 
and new entities appear every day) make it important for a 
NER system to be able to adapt to domain changes  

(Wu et al., 2009). In order to achieve this adaptability, we 
have implemented a hybrid annotation technique, which 
combines the trained NER model and domain lexicons that 
contain verified named entities. On top of this annotation, 
we created a bootstrapping mechanism, which suggests new 
named entities to be added to the lexicon, when they are 
frequently detected within the articles. The use of lexicon 
guarantees that all the occurrences of these words will be 
detected in the text, even when the NER model fails, thus 
increasing recall. And this process runs continuously for 
every new language corpus. 

The need for extensive training also exists in the case of 
SA. The techniques that use word vectors (Wu et al., 2009), 
latent Dirichlet allocation (LDA) (Boyd-Graber and Resnik, 
2010) or any supervised algorithm require large training 
corpora or parallel linguistic resources in all languages 
(thesauri, lexicons, etc.) in order to operate. In all cases, the 
human resources required for training the models and the 
processing power for applying them to new texts is huge. 
Once again, we developed tools that allow the quick and 
semi-automatic creation of training corpora. The annotation 
tools support an Auto-annotate feature, which employs 
existing models in order to annotate the texts and then 
allows human annotators to correct any possible errors, thus 
reducing the overall effort required. When applying the 
models, we take advantage of the multiprocessor 
infrastructure and balance the load for the different 
languages. 

6.2 Entity type ambiguity 
One of the biggest challenges in the recognition of named 
entities in texts is the resolution of ambiguity for certain 
entity names and types. 

One type of ambiguity refers to the names of companies 
or products (mainly), which can be simple words that we 
use in the everyday life, e.g., Windows, Apple, Amazon, to 
name a few. A solution to this ambiguity can be to examine 
the context of the word in order to decide whether it 
corresponds to an entity or not. The algorithm that we use 
and the most popular probabilistic NER algorithms (i.e., 
CRFs, hidden Markov models) take into account the 
neighbourhood of a candidate entity word in order make a 
decision. However, a side problem that arises in this case is 
that a large set of annotated documents is needed in order to 
cover as many entity context cases as possible. Another 
solution is to create specific entity lexicons for each country 
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and language, but this is a tedious task which requires many 
resources. In our approach, we are able to suggest words to 
be added (semi-automatically) to such lexicons, when they 
are frequently detected by the NER algorithm. 

Another type of ambiguity refers to terms that 
correspond to more than one entity types. For example, it is 
quite common that companies (or organisations) take the 
name of the place they originate (e.g., Liverpool soccer 
team, Aegean airlines, Oxford university) and we have to 
search for a word in the context that determines the entity’s 
type. Once again probabilistic NER algorithms perform well 
when available training instances exist. 

A third type of ambiguity, which is more evident in 
morphologically rich languages such as Arabic or Greek, is 
to detect all the different writings of the same entity. 
Although this does not affect the named entity detection 
algorithm, it is important for the analytics engine, where we 
need to group all the different mentions under the same 
entity. Once again, our system provides a semi-automatic 
solution that suggests pairs of words that potentially 
correspond to the same entity. These pairs may appear 
frequently within the same context (the same article, within 
a set of articles that are on the same topic), may have high 
similarity in character-level or both. 

6.3 Coreference resolution 
An even more difficult task than detecting the different 
writings of the same entity can become coreference 
resolution. Coreference resolution is the task of grouping all 
the mentions of entities in a document into equivalence 
classes so that all the mentions in a given class refer to the 
same discourse entity. This assumes that even relative 
pronouns in a sentence can refer to an entity mentioned in a 
previous sentence. This problem is not so critical, when we 
only need the mentions to a named entity in article level. 
However, when we need fine-grained analytics that locate 
references to entities in sentence level and we are also 
interested to the opinion or sentiment assigned to the entity, 
then it is more important to detect such implicit references. 
For example, when a sentence mentions the name of the 
product and the sentence that follows expresses a negative 
sentiment on this product, without mentioning its name 
again, the resolution of coreference is important. 

Despite the advances done for the English languages, 
the resolution of coreference for many languages is still far 
from being solved and several linguistic analysis resources 
are necessary in order to tackle it. Since we focus on content 
in multiple languages we have not yet incorporated a 
coreference resolution module into our architecture. 

6.4 Content size 
Another important issue when dealing with news and social 
media content is the volume and volatility of data. For 
example, when a major event happens in a country, the 
volume of tweets and articles multiplies 
(Giannakoulopoulos and Varlamis, 2009; Anstead and 
O’Loughlin, 2011) and the load for the system too. 

Although short term analysis of content is useful for 
sentiment monitoring purposes, the content itself may be of 
little use after the event. So it is important in such cases to 
process the content on the fly and summarise the sentiment 
or entity references. However, the content itself may be 
useful for post analysis or even when the users want to drill 
down to each specific mention to an entity instead of 
looking at the broad picture (mentions and overall 
sentiment). 

In order to tackle this, we have two processing 
pipelines: one that processes content stream on the fly and 
feeds our real-time analytics and one that aggregates the 
content and stores it for future analysis or review. The first 
pipeline has to be really fast and offer a high throughput, 
whereas the second has lowest priority and uses the 
available resources in order to run various analytics on the 
raw text data. 

7 Conclusions 
In this article we presented the overall architecture of our 
platform, which is designed for the collection and analysis 
of social media and the news. We focused on the modules 
that perform text mining and analytics in order to extract 
useful knowledge for entities and sentiment associated to 
them. An initial analysis of the performance of the NER and 
SA modules shows that the solution achieves a performance 
which is comparable to related systems. There is still 
enough room for improving the quality of results and reach 
the levels of state-of-the art NLP methods, which however 
are evaluated in smaller test corpora and mostly focus on 
quality of results and neglect processing speed. 
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