
Machine Learning in SQL by Translation to TensorFlow

Nantia Makrynioti∗
CWI

Amsterdam, the Netherlands
nantia@cwi.nl

Ruy Ley-Wild†
LogicBlox

Atlanta, GA, USA

Vasilis Vassalos
Athens University of Economics and

Business
Athens, Greece
vassalos@aueb.gr

ABSTRACT
We present sql4ml, a framework for expressing machine learn-
ing (ML) algorithms in a relational database management system
(RDBMS). The user writes the objective function of an ML model
as a SQL query, then sql4ml translates the query into an equivalent
TensorFlow (TF) graph, which can be automatically differentiated
and optimized to learn the model weights. Sql4ml makes the data-
base a unified programming environment for feature engineering,
learning/inference, and evaluating models. The proposed approach
is more expressive than using ready-made ML algorithms, but ab-
stracts away the details of the training process. We present the
architecture of sql4ml and describe the method for translating
an objective function in SQL to a TensorFlow representation. We
show how recent ideas from Factorized ML [7] can be leveraged to
efficiently move data between a database and an ML framework. Fi-
nally, we present experimental results regarding both the proposed
translation and the optimization techniques for data transfer. Our
results show that translation time is negligible compared to time for
data processing, and that the optimization techniques achieve up
to 50% improvement in the export runtime and up to 85% decrease
in the size of the exported data.

CCS CONCEPTS
• Information systems→Query languages; •Computingmethod-
ologies →Machine learning.

KEYWORDS
SQL, mathematical optimization problems, RDBMS, TensorFlow

ACM Reference Format:
Nantia Makrynioti, Ruy Ley-Wild, and Vasilis Vassalos. 2021. Machine
Learning in SQL by Translation to TensorFlow. In International Workshop
on Data Management for End-to-End Machine Learning (DEEM’21), June
20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3462462.3468879

∗Work done while the author was a PhD student at the Athens University of Economics
and Business.
†Now at Google.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEEM’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8486-5/21/06. . . $15.00
https://doi.org/10.1145/3462462.3468879

1 INTRODUCTION
The need for democratizing data science has led to the development
of a plethora of tools over the last decade. An area that has been
largely studied is the integration of machine learning functionali-
ties in relational database systems [11, 22, 26]. The attractiveness
of this approach is twofold: (a) to bring the ML computation where
the data live and avoid data movement between systems, (b) to
use a declarative language for data science, capable of both data
pre-processing steps through the existing relational operators and
ML training/inference. For example, MADlib [11] and BigQuery
ML 1 offer implementations of ML algorithms as user-defined func-
tions (UDFs) to be called in SQL queries. Other work [26], [17],
[8] proposes the extension of SQL with matrices/vectors and a set
of linear algebra operators. Work in [12] combines this approach
with optimizing recursion and large query plans on an RDBMS to
provide more efficient support for training ML models.

We propose sql4ml, a framework for expressingML algorithms in
SQL that lies in between the UDFs of ready-madeML algorithms and
the extension of SQL with linear algebra operators. As it has been
pointed out by research on declarative and in-database machine
learning [4, 10, 16], a large class of machine learning algorithms
fall under the umbrella of convex optimization problems whose
objective function can be expressed with statistical queries (e.g. min,
max, sum). These ML models include linear and logistic regression,
support vector machines and k-means, among others. Based on
this observation, we design sql4ml to follow the "model + solver"
approach, where there is a description of the objective function of
an ML model, and a solver that provides a solution for it. This level
of abstraction already exists in ML platforms, such as TensorFlow2

and PyTorch3, with classes like tf.keras.optimizers and
torch.optim, along with two other levels of functions: out-of-
the-box ML algorithms and linear algebra operators. The "model +
solver" approach critically relies on automatic differentiation, which
unfortunately is not supported by database systems. Another cum-
bersome piece regarding the solving part is the expression of itera-
tive processes in a database system, which are typically supported
via common table expressions (CTE) with fixpoint semantics [12].
CTEs append tuples to a relation after each iteration, which leads
to maintaining unnecessary intermediate results for a training pro-
cess whose convergence depends only on the error between the
previous and the current iteration [3].

We use the TensorFlow engine [1] to complement a DBMS with
automatic differentiation and iterative optimization, allowing users

1https://cloud.google.com/bigquery-ml/docs
2https://www.tensorflow.org/
3https://pytorch.org/

https://doi.org/10.1145/3462462.3468879
https://doi.org/10.1145/3462462.3468879

DEEM’21, June 20–25, 2021, Virtual Event, China Makrynioti and Ley-Wild, et al.

to define ML algorithms in terms of an objective function. The users
write the objective function of the ML model as SQL queries on
the database schema, i.e., they express the ML algorithm at a lower
level than calling a user-defined function (UDF), but they are not
required to write the iterative process for training themodel, i.e., the
derivatives and mathematical optimization algorithm. The training
of the model is backed up by the TensorFlow engine, which executes
a translated representation of the objective function generated
automatically based on the SQL code. Essentially, the objective
function in SQL serves as a query for the weights that minimize it,
whereas the generated TensorFlow representation is effectively a
physical plan of such a query.

The design of the proposed translation layer aims at portability
and compositionality. First, it can be used with existing RDBMSes
without requiring any modifications. Second, although our imple-
mentation specifically targets SQL and TensorFlow, the ideas are
equally applicable to other database languages such as Datalog and
other ML libraries such as PyTorch.

The contributions of our work are summarized below:
• We propose a unified architecture for formulating a wide
class of ML models as optimization problems on relational
databases by representing the objective function as a SQL
query. We implement sql4ml using PostgreSQL and Tensor-
Flow, and use it to implement common ML models.

• We describe and implement the translation of SQL queries
defining an objective function to linear algebra operations
in TensorFlow. The code is available at https://github.com/
nantiamak/sql4ml.

• We provide a mechanism to transfer data transparently be-
tween relations and tensors, and propose optimization tech-
niques to improve the efficiency of this process. The ex-
port/import of data between a database system and an ML
library is very common in data science workflows. This spe-
cific mechanism can benefit these workflows independently
of the language used to express the ML model.

• Finally, we present evaluation results regarding the transla-
tion method and the optimization techniques used in trans-
ferring data from an RDBMS to tensors. Results indicate that
the translation time between SQL and TensorFlow code re-
mains quite small. Also, optimization techniques for moving
data from relations to tensors decrease export runtime and
the size of the exported data up to 50% and 85% respectively.

The rest of the paper is organized as follows. Section 2 presents
an overview of the proposed workflow and examples of ML models
as they are written following our approach. In Section 3 we explain
the translation process from SQL queries to linear algebra expres-
sions in TensorFlow, while Section 4 describes the transfer of data
between relations and tensors. Sections 5 discusses the benefits
of the proposed approach, and Section 6 presents experimental
results. Finally, in Section 7 we discuss related work, and conclude
in Section 8.

2 OVERVIEW OF APPROACH
In this section we describe the main abstractions that are employed
in sql4ml, present the overall architecture and give examples of ML
models written in SQL.

DB
SQL code

ML Framework

ML code

Code for
querying DB

Tensor of model
coefficients

Stored in a relation

AST

User provided

Automatically generated

Figure 1: Proposed workflow between a DBMS and an ML
system

2.1 ML as Optimization Problems
A large class of ML algorithms can be cast as mathematical opti-
mization problems and described by two main components: the
objective function and the mathematical optimization algorithm.
For example, linear regression, logistic regression, Factorization
Machines, SVM and k-means can be implemented in this manner.
We explain the components as follows.

Objective function. Given a set of input features and labels (𝑥𝑖 , 𝑦𝑖),
a machine learning algorithm defines an objective function. For
example, the objective function of logistic regression is

− 1
𝑛

𝑛∑
𝑖

[𝑦𝑖 log(ℎ𝜃 (𝑥𝑖)) + (1 − 𝑦𝑖) log(1 − ℎ𝜃 (𝑥𝑖))], (1)

where ℎ𝜃 (𝑥) is the prediction function defining the relationship on
the input features 𝑥

ℎ𝜃 (𝑥𝑖) =
1

1 + 𝑒−𝑥𝑖⊤𝜃
, (2)

and 𝜃 are the unknown weights of the ML model to be optimized.

Mathematical optimization algorithm. The goal is to find the
values of weights 𝜃 that minimize/maximize the objective function
(maybe locally or globally). This search is done using amathematical
optimization algorithm, such as gradient descent. Gradient descent
is an iterative method that computes the derivative of the objective
function and updates the ML model weights at each step.

Given a mathematical optimization algorithm and an automatic
differentiation mechanism, the user only needs to provide the ob-
jective function of the ML model in terms of input data points and
weights. In Section 3, we show howwe represent objective functions
in SQL and leverage TensorFlow for mathematical optimization
algorithms and automatic differentiation.

2.2 End-to-end workflow
In sql4ml the user writes SQL for both data preprocessing and
feature engineering on the input data, as well as for expressing the
objective function of the ML model. Figure 1 displays the sql4ml
workflow. The objective function is represented by a SQL query
with auxiliary view definitions/subqueries, which are automatically
translated to linear algebra operators on tensors in TensorFlow.

The final representation of the ML model is created in two steps.
First, the SQL code defining the objective function is converted to an

https://github.com/nantiamak/sql4ml
https://github.com/nantiamak/sql4ml

Machine Learning in SQL by Translation to TensorFlow DEEM’21, June 20–25, 2021, Virtual Event, China

abstract syntax tree (AST), which is then translated to tensor-based
operations as supported by the host language of an ML framework.
The generated code is supplemented with a few more lines calling
iteratively a mathematical optimization algorithm, (e.g., gradient
descent) on the objective function. Our approach also generates
code for feeding data from relations to tensors. The entire program
is then executed on the ML framework. Finally, the weights for
the objective function are computed and are transferred back to
relations inside the database.

Only the queries that define the objective function of the ML
model are translated to the appropriate operators in the ML frame-
work and are evaluated in it. On ML frameworks supporting it, this
means that linear algebra operators can also run on GPUs. The rest
of the SQL code that concerns preprocessing, feature engineering
or recording accuracy metrics of the trained model is still evalu-
ated inside the database. The reason for this dichotomy is to exploit
mature solutions for automatic differentiation and mathematical op-
timization algorithms for training on existing ML platforms, as well
as advanced query optimization techniques provided by relational
database systems.

2.3 Overview Examples
In this section we present how the objective functions of machine
learning algorithms are written in SQL through the examples of
logistic regression and a two-layer neural network. We assume the
following schemas:

features(rowID: int, feature: int, v: double)
labels(rowID: int, v: double)
weights(feature: int, v: double)

-- Same tables as above for training data

weights_first(node: int, feature: int, v: double)
weights_second(node: int, feature: int, v: double)
weights_output(node: int, feature: int, v: double)

The features and labels tables store the features and labels of
the training observations. For example, the entry (1, 1, 30.5)
means that feature 1 of observation 1 has value 30.5. Data for
these two tables are provided by the user, extensional to the data-
base. The weights table is filled in after the training of the ML
model is complete. For logistic regression we use a single weights
table (weights), whereas for neural network we use one weight
table per layer (weights_{first, second, output}).

Given these tables and regarding logistic regression, we define
the SQL viewssigmoid for the sigmoid function andobjective
for logistic loss (see Equations 1 and 2). These functions are ex-
pressible in plain SQL using numeric and aggregation operations,
as it is displayed in Listing 1. An extension of SQL with linear al-
gebra operators could express some of the involved computations
more succinctly e.g., by using a matrix multiplication operation for
the product between features and weights instead of an aggrega-
tion query. The approach of sql4ml could easily work with such
a syntax as well. Note that the users define the model by writing
only the objective function, whereas the training procedure that
optimizes it is generated automatically by our framework. Hence,
they are relieved from more complex mathematical details, such as
derivatives, and from expressing iterative logic in SQL.

Listing 1: Logistic regression in SQL
CREATE VIEW product AS

SELECT SUM(features.v * weights.v) AS v,
features.rowID AS rowID

FROM features, weights
WHERE features.feature=weights.feature
GROUP BY rowID;

CREATE VIEW sigmoid AS
SELECT product.rowID AS rowID,
1/(1+EXP(-product.v)) AS v

FROM product;

CREATE VIEW log_sigmoid AS
SELECT sigmoid.rowID AS rowID,
LN(sigmoid.v) AS v

FROM sigmoid;

CREATE VIEW log_1_minus_sigmoid AS
SELECT sigmoid.rowID AS rowID,
LN(1-sigmoid.v) AS v

FROM sigmoid;

CREATE VIEW objective AS
SELECT (-1)*SUM((labels.v * log_sigmoid.v) +

((1-labels.v) * log_1_minus_sigmoid.v)) AS v
FROM labels, log_sigmoid, log_1_minus_sigmoid
WHERE labels.rowID=log_sigmoid.rowID
AND log_sigmoid.rowID=log_1_minus_sigmoid.rowID;

Listing 2: Softmax activation function in SQL

-- Output layer with softmax function

CREATE VIEW output_layer AS
SELECT weights_second.node AS node,
layer_second.rowID AS rowID,
SUM(layer_second.v*weights_output.v) AS v

FROM layer_second, weights_output
WHERE layer_second.node=weights_output.feature
GROUP BY weights_output.node, layer_second.rowID;

CREATE VIEW sum_output_layer AS
SELECT rowID,
SUM(EXP(output_layer.v)) AS v

FROM output_layer
GROUP BY rowID;

CREATE VIEW softmax AS
SELECT output_layer.rowID,
output_layer.node,
EXP(output_layer.v)/sum_output_layer.v AS v

FROM output_layer, sum_output_layer
WHERE output_layer.rowID=sum_output_layer.rowID;

A neural network can be expressed in a similar manner. The user
writes the activation functions of the hidden and output layers, as
illustrated in the definition of the softmax function, 𝑆 (𝑧𝑖) = 𝑒𝑧𝑖∑

𝑗 𝑒
𝑧𝑗 ,

for the output layer in Listing 2 (we assume that the first and
second layers are defined beforehand in a similar manner). The
objective function of choice is also expressed in the same way as
the viewobjective in Listing 1. Although the objective functions
of neural networks are often non-convex, gradient descent variants
are still used for finding good enough local minima [15]. In sql4ml,
other optimization algorithms provided by the ML framework (e.g.,
the Adam optimizer [14]) can also be plugged in by generating code
containing the required function calls.

DEEM’21, June 20–25, 2021, Virtual Event, China Makrynioti and Ley-Wild, et al.

Listing 4: Feature-weight product in a SQL extension with
linear algebra operators
CREATE TABLE input_data (features MATRIX[100][10],
weights VECTOR[10]);

SELECT matrix_vector_multiply (input_data.features,
input_data.weights)

AS product
FROM input_data;

In the following section, we discuss in detail how we go from
the SQL representation to TensorFlow as a backend ML system. We
translate SQL-defined objective functions to equivalent expressions
in the TensorFlow Python API.

3 FROM SQL TO TENSORFLOW
We discuss the translation process between SQL queries and linear
algebra operations using the example of a product between features
and weights below.

𝑝 = 𝑥⊤𝜃 (3)
In our examples, we use the TensorFlow API, but the same process
could be followed for other ML APIs offering similar operators,
such as PyTorch. Assuming the tables features and weights
from the previous section represent the features 𝑥 and weights 𝜃 ,
Listing 3 presents how their product can be expressed in SQL.

Listing 3: Feature-weight product in SQL
SELECT features.rowID AS rowID,

SUM(features.v * weights.v) AS v
FROM features, weights
WHERE features.feature = weights.feature
GROUP BY rowID;

In an extension of SQL with linear algebra operators [17] the afore-
mentioned query could look as in Listing 4. Such an extension
allows a more direct matching with the TensorFlow API. Neverthe-
less, plain SQL queries implementing linear algebra computations
can be translated to TensorFlow operations as well. We develop
our translation method to work with plain SQL so that different
RDBMSes can use it without modifications. In both cases the steps
of the translation are similar.

Currently we handle queries with the following structure:

Listing 5: Query structure
CREATE VIEW $(name) AS
SELECT $(columns), $(numericExpr)
FROM $(tables)
WHERE $(joinElement)
GROUP BY $(groupingElement)}

We assume that there is only one numeric expression per query,
although it may involve multiple nested computations, e.g. (a+b)/c.
Because we do not handle subqueries, we store the result of a
query as a view and use the view name in subsequent queries when
needed.

The SQL fragment in Listing 3 is translated to the equivalent
TensorFlow expression below:

Listing 6: Feature-weight product in TF
products = tf.matmul(features, weights)

The translation proceeds by applying typical steps from compiler
theory. A SQL query is first tokenized (lexed) and parsed into an
abstract syntax tree (AST). Based on the ASTwe extract the numeric
expression involved in the query, as well as the names of the view
and tables, and generate an equivalent TensorFlow command.

The AST represents necessary information for translating a SQL
query to functions of the TensorFlowAPI. This information includes
the operators that are involved in a SELECT numeric expression,
the columns on which the operators operate, the tables where the
columns came from, as well as the columns involved in group by
expressions. In order to generate the TensorFlow code, we need
to match SQL numeric operators and aggregation functions with
linear algebra and other numeric operators on the TF side. Table 1
displays how common operations encountered in ML algorithms
are implemented in SQL and TF.

Starting with the query that defines the objective function, we ex-
tract the numeric expression among the SELECT expressions and
we analyze it recursively by visiting each subexpression and decom-
posing it to the operators and the columns involved as described in
Algorithm 1. We apply a compositional translation that preserves
the structure between the SQL and TensorFlow expressions. If the
expression is a column or a constant, we output a variable name
or a TensorFlow constant. Otherwise, we match the expression
to a TensorFlow operation according to Table 1 and proceed with
translating its operands. Recall that tensors store only real values,
so analyzing column projections/expressions of other types is not
applicable.

input :AST of numeric expression
output :equivalent TensorFlow expression
Function translateNumericExpr(𝑒𝑥𝑝𝑟):

if 𝑒𝑥𝑝𝑟 is a ⟨𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡⟩ then
return a TensorFlow Constant

end
if 𝑒𝑥𝑝𝑟 is a ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑁𝑎𝑚𝑒⟩ then

return a TensorFlow Variable Name
end
if 𝑒𝑥𝑝𝑟 is ⟨𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 (𝑂𝑝𝑒𝑟𝑎𝑛𝑑1,𝑂𝑝𝑒𝑟𝑎𝑛𝑑2)⟩ then

return ⟨𝑚𝑎𝑡𝑐ℎ𝑇𝑒𝑛𝑠𝑜𝑟𝐹𝑙𝑜𝑤𝑂𝑝 (𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟)⟩ with
arguments 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝐸𝑥𝑝𝑟 (⟨𝑂𝑝𝑒𝑟𝑎𝑛𝑑1⟩),
𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝐸𝑥𝑝𝑟 (⟨𝑂𝑝𝑒𝑟𝑎𝑛𝑑2⟩)

end
Algorithm 1: Function translateNumericExpr

For example, in the select query in Listing 3 we will translate
only the expressionSUM(features.v * weights.v). Based
on Table 1 we match the combination of function SUM and ∗
with tf.matmul. Then we scan the columns features.v and
weights.v, and identify that they belong to tables features
and weights. We use these table names for naming the tensors
participating in the corresponding TensorFlow operation.

Based on the SQL program that defines the objective function, we
create a TensorFlow computational graph. The graph is optimized
and executed in its entirety by TensorFlow. Data are exported once
before training and computed model weights are imported when
training is complete. The first time training data are mapped from
relations to tensors and the second time weights are stored back to

Machine Learning in SQL by Translation to TensorFlow DEEM’21, June 20–25, 2021, Virtual Event, China

Table 1: Common operations in ML as implemented in SQL and TF

Type Name SQL TensorFlow

Linear Algebra addition, subtraction, element-wise
multiplication, division

+, -, *, / tf.add, tf.subtract,
tf.multiply, tf.div

matrix multiplication SUM(_*_) tf.matmul
Element-wise arith-
metic

exponential, logarithm, square EXP, LN, POW(_,2) tf.exp, tf.log, tf.square

Aggregation summation, mean, count (row/column) SUM, AVG, COUNT (ap-
propriate group by)

tf.reduce_sum,
tf.reduce_mean, size

relations. Both SQL and TF API have fairly flat type systems, i.e.,
sets of scalar tuples in SQL and maps from a finite domain of keys
to real values in TF. A relation 𝑅(𝑖𝑑𝑖 , 𝑓 𝑘𝑖 , 𝑓 𝑣𝑖) can be formulated as
a 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (𝑖𝑑) × 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (𝑓 𝑘) matrix where:

𝑀 [𝑖] [𝑗] = 𝑣𝑖 𝑗 , 𝑖 ∈ [1, 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (𝑖𝑑)]
𝑗 ∈ [1, 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (𝑓 𝑘)], 𝑣𝑖 𝑗 ∈ R

(4)

The mapping between the vector of computed weights𝑊 of size
1 × 𝑓 𝑘 , where 𝑓 𝑘 is the number of features, and the corresponding
relation 𝑅(𝑓 𝑘, 𝑓 𝑣) in the database happening at the end of training
is:

∀𝑡 ∈ 𝑅, 𝑅.𝑓 𝑣 =𝑊 [𝑖]𝑤ℎ𝑒𝑟𝑒𝑅.𝑓 𝑘 = 𝑖, 𝑖 ∈ [1, 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 (𝑓 𝑘)]
(5)

Essentially, the objective function in SQL is treated as a query that
computes the weights which minimize it, whereas the TensorFlow
graph serves as a query plan that evaluates this query. Hence, indi-
vidual linear algebra operators are not evaluated eagerly and data
are not transferred back and forth for each operator. The reason
for this choice is that the purpose of our framework is training ML
models written in SQL efficiently, rather than providing backend
implementations for linear algebra operators in SQL.

Finally, our Haskell implementation of the translation process
represents SQL and TensorFlow expressions using algebraic data
types (ADTs). Hence, extending the translation to support more
operators requires defining the appropriate ADTs. So far we have
generated correctly translated code for Linear and Logistic Regres-
sion, Factorization Machines and a two-layer Neural Network (cf.,
Section 6.1).

4 MOVING DATA
Data are initially stored as relations inside the database. Using
annotations or command line arguments, the users denote the tables
that store the features and the labels based on which the ML model
will be trained, as well as the table for the weights. Then, sql4ml
generates the necessary logic to transfer the data and feed the
tensors.

The main challenge in this transfer stems from the difference
between the normalized and the denormalized representation of the
data. Let us illustrate this with an example. A common case where
data of interest are normalized across tables is a star schema. In a
star schema there are multi-table PK-FK (primary key-foreign key)
joins between entity and attribute tables. For example, in a demand
forecasting scenario for products the table with sales serves as an
entity table and may have three foreign keys referring to attribute

tables about products, stores and holidays, as shown in Listing 7.

Listing 7: Simple demand forecasting database schema
-- Attribute tables
products(productID: string, family: string, price: double

)
stores(storeID: string, city: string)
holidays(dateID: string, type: string)
-- Entity table
sales(productID: string, storeID: string, dateID: string,

v: double)

To transfer the data to a matrix, we need to consolidate all fea-
tures of an observation to a single row. Hence, if we would like
to use columns in the attribute tables, such as the family and the
price of the product as well as the city of the store, as training
features, we need to join each tuple in the sales tables with its
corresponding products and stores tuples. To implement this
logic, we generate the required SQL queries which create a denor-
malized representation with all the training attributes. For example,
the query in Listing 8 creates a denormalized representation of the
family and city features for every tuple in sales.

Listing 8: Query for exporting family and city features

SELECT sales.productID, sales.storeID, sales.dateID,
family, city

FROM sales, products, stores
WHERE sales.productID=products.productID
AND sales.storeID=stores.storeID;

However, such universalmatrices including all features are known
to introduce redundancy [21] and when it comes to large datasets,
this leads to increased storage requirements and export time. In
the following, we propose optimization techniques from the data
management community to reduce the cost of denormalization
in exporting training data. More specifically, we leverage recent
advances in the area of Factorized ML [7] to avoid denormalizing
and exporting feature data as a single matrix. In case a single matrix
is still necessary, we also propose the use of materialized views to
avoid repeated computations when possible.

4.1 Optimizing exports
4.1.1 Avoiding redundancy introduced by joins. Going back to the
schema of Listing 7, let us assume that we would like to train a lin-
ear regression model for future sales prediction with family and city
as features. The prediction function would then be a sum of prod-
ucts between family/city features and weights. For storing weights,
we create two tables, familyWeights and cityWeights, with

DEEM’21, June 20–25, 2021, Virtual Event, China Makrynioti and Ley-Wild, et al.

Listing 9: Schema of weight tables for family and city fea-
tures
familyWeights(family: string, familyWeight: double)
cityWeights(city: string, cityWeight: double)

Listing 10: SQL query for prediction using family and city as
features
SELECT sales.productID, sales.storeID, sales.dateID,
(familyWeight + cityWeight)

FROM sales, products, stores, familyWeights, cityWeights
WHERE products.family = familyWeights.family
AND stores.city = cityWeights.city
AND sales.productID = products.productID
AND sales.storeID = stores.storeID;

the schema in Listing 9. We use the SQL query in Listing 10 to imple-
ment the prediction function. As family and city are categorical fea-
tures, we use an implicit one-hot encoding representation of them
in the expression (familyWeight + cityWeight) by join-
ing products with familyWeights on family, and stores
with cityWeights on city, thus adding only the weights that
correspond to the family of the product and the city of the store.

The schema in Listing 7 indicates that family/city features share
common values for tuples of the entity table referencing the same
product and/or store, resulting in exporting the same values mul-
tiple times in case a universal matrix 𝑇 of size 𝑛 × 𝑚 (where 𝑛
is the number of training observations and 𝑚 is the total num-
ber of features) is created. For example, in tuples (product1,
store1, date1) and (product1, store2, date2) the
family feature is identical as both concern "product1".

To alleviate the overhead caused by this redundancy, we gener-
ate queries to implement the method proposed in [7]. The described
method decomposes linear algebra operations over a universal ma-
trix 𝑇 into ones that operate on base matrices corresponding to
tables of the normalized schema. Hence, for translating the expres-
sion (familyWeight + cityWeight) to vectorized linear
algebra operations, it is not necessary to populate a universal ma-
trix. Instead we use the concept of normalized matrix introduced
in [7] and generate code that pertains to the following expression.

𝑇𝑊 → 𝐾𝑝 (𝑋𝑓𝑊𝑓) + 𝐾𝑠 (𝑋𝑐𝑊𝑐), (6)

where 𝐾𝑝 and 𝐾𝑠 are indicator matrices of size 𝑛 ×𝑚𝑝 and 𝑛 ×𝑚𝑠

respectively,𝑚𝑝 is the number of products and𝑚𝑠 is the number
of stores. 𝑋𝑓 and 𝑋𝑐 are of size𝑚𝑝 ×𝑚𝑓 and𝑚𝑠 ×𝑚𝑐 and store
the family and city features, whereas𝑊𝑓 and𝑊𝑐 are vectors of
size𝑚𝑓 and𝑚𝑐 storing family and city weights.𝑚𝑓 is the number
of distinct families and𝑚𝑐 is the number of distinct cities. Since
matrices store only real values, family and city features are encoded
numerically as𝑚𝑓 and𝑚𝑐 values.

An indicator matrix encodes the foreign key relationship be-
tween an entity and an attribute table. Rows correspond to observa-
tions in the entity table and columns to serial identifiers of tuples in
an attribute table. A cell is one if an observation has a foreign key
relationship with a tuple in the attribute table and zero otherwise.

For example 𝐾𝑝 is constructed as follows:

𝐾𝑝 [𝑖, 𝑗] =
{
1, if for the 𝑖𝑡ℎ observation 𝑠𝑒𝑟𝑖𝑎𝑙𝐼𝐷 [𝑠𝑎𝑙𝑒𝑠.𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝐼𝐷] = 𝑗

0, otherwise
(7)

As an indicator matrix consists only of ones and zeros, a sparse
representation of size𝑛 capturing only ones can be exported, instead
of a universal matrix𝑇 of size 𝑛 × (𝑚𝑓 +𝑚𝑐) gathering all features.
Queries for exporting columns of attribute tables are also generated.
The overhead of these queries is typically small, as attribute tables
contain fewer tuples than the entity table.

To optimize data export in this way, the generated code needs to
include the rewritten export queries and linear algebra operations
that work with the normalized matrix. The set of linear algebra
operators that can be handled with a normalized matrix and an
analysis on where such rewrites are efficient are presented in [7].
For now we assume that the user makes the choice to apply this
optimization, but it could also be triggered by the system based
on heuristic rules that take into account cardinality estimation on
joins or an appropriate cost model.

4.1.2 Reuse of feature computations. Based on the same observa-
tion regarding repetitive features occuring after a PK-FK join, we
can use precomputed tables/materialized views to store and later
reuse computations regarding features.

Following the schema and scenario in 4.1.1, let us assume that
we would like to export training data as a single universal matrix,
but first transform the price of a product using min-max feature
scaling. The first query in Listing 11 naively computes the min-
max scaled price for every observation. A more efficient version of
this query can be generated by precomputing the min-max price
scaling for each product once and storing it in a table/materialized
view, as it is also depicted in Listing 11. Then each observation
is joined on productID with the corresponding tuple from the
tables/materialized view.

Listing 11: Precomputing min-max feature scaling for price

// Naive implementation
SELECT sales.productID, sales.storeID, sales.dateID,

(price-price_min)/(price_max-price_min) as price_norm
FROM products, sales,

(SELECT MIN(price) as price_min, MAX(price) as
price_max

FROM products) AS temp
WHERE sales.productID = products.productID;

CREATE TABLE price_normalization AS
SELECT productID,

(price-price_min)/(price_max-price_min) AS price_norm
FROM products,

(SELECT MIN(price) AS price_min,
MAX(price) AS price_max

FROM products) AS temp;

SELECT sales.productID, sales.storeID, sales.dateID,
price_norm

FROM sales, price_normalization
WHERE sales.productID=price_normalization.productID;

Based on the statistics the database holds, it is easy to figure out
that the cardinalities of products, stores and holidays are smaller
than the total number of sales and thus that some feature compu-
tations will be repeated. As a result, preprocessing steps, such as

Machine Learning in SQL by Translation to TensorFlow DEEM’21, June 20–25, 2021, Virtual Event, China

one-hot encoding or normalization to a different scale, on features
that are based on individual dimensions of observations can be
automatically precomputed by the system. For now though we
assume again that the user chooses when to apply the described
technique.

5 BENEFITS OF APPROACH
In this section we discuss the main benefits of the design choices
in sql4ml.

Portability: Adding a translation layer between an RDBMS and
an ML framework enables portability and interoperability. Imple-
mentations of ML algorithms as UDFs running in an RDBMS may
offer a performance boost, but they are developed for a specific
database system and require knowledge of its internal design for
optimal efficiency. Extensions of SQL with linear algebra opera-
tors require modifications on the RDBMS as well, but they also
leave the implementation of the entire training process to the user.
Furthermore, the result of the translation in sql4ml is valid and
readable TensorFlow/Python code, which can naturally be com-
bined with other code in Python, a popular language in the data
science community.

Holistic training optimization: In our approach, a set of SQL
queries defining the objective function of the ML model are opti-
mized as a whole and lazily executed. Hence, the generated Tensor-
Flow code implements a query plan for the queries of the objective
function. TensorFlow programs are declarative as well and they de-
fine a computational graph, which is optimized by the TensorFlow
engine. The involved data are marshalled into this query plan/graph
once and are then processed by every operator in it. In this way,
we avoid the costly and redundant back and forth move of the data
between the RDBMS and TensorFlow. We also exploit the code
optimization techniques of the TensorFlow engine to provide more
efficient execution graphs for training the translated ML model.

Accelerator execution: Last but not least, the synergy with ML
frameworks opens up the capability of training on GPUs and TPUs,
which are proven to be more efficient than CPUs on ML workloads
[20], [25].

6 EXPERIMENTS
We conducted two types of experiments: (1) the time translation
takes to generate the entire TensorFlow program for four models
defined in SQL and for different feature sets, (2) the time difference
between exporting training observations with and without each
of the two optimization techniques presented in section 4. We also
provide comparisons with Pandas4 and MADlib regarding export
time of training data and training runtime.

Experimental setup Experiments ran on a machine with Intel
Core i7-7700 3.6 GHz, 8 cores, 16GB RAM and Ubuntu 16.04. We
use PostgreSQL 11.5 and Pandas 1.2.0 with Python 3.7.9. Wherever
time performance is provided, we report average wall-clock time
after five runs.

4https://pandas.pydata.org/

Table 2: Datasets

Stats/Dataset Boston Housing Walmart Favorita
Observations 506 421570 125497040
Total Features 13 7 12
Numeric features 13 5 4
Categorical features 0 2 8

LinR FM LogR NN

0.02

0.04

0.06

0.08

0.1

Ti
m
e
(s
ec
)

(a) Translation time

LinR FM LogR NN

20

30

40

50

26

36

29

42

24

34

29

36

Li
ne
so

fc
od

e

TF generated code TF handwritten code

(b) Lines of code

Figure 2: Time and lines of generated code from translating
SQL to TensorFlow code - Linear Regression (LinR), Factor-
ization Machines (FM), Logistic Regression (LogR), Neural
Network (NN)

Datasets Three datasets are used throughout the experiments:
Boston Housing5, Favorita6 and Walmart7. Boston Housing is a
small dataset including characteristics, such as per capita crime
rate, pupil-teacher ratio, and the median value of owner-occupied
homes for suburbs in the Boston area. The Walmart and Favorita
datasets are public datasets consisting of daily sales from different
stores of either the Walmart or the Favorita chain, having a star
schema similar to Listing 7. The former includes some hundreds
of thousands of tuples, whereas the latter goes up to dozens of
millions. Dataset characteristics are displayed in Table 2.

6.1 Translation time from SQL to TensorFlow
In Figure 2a and Table 3 we measure the time to translate the origi-
nal SQL code provided by the user to TensorFlow code. The gener-
ated TensorFlow code includes all steps of the workflow end-to-end,
i.e. code for exporting/importing data, defining the ML model and
running a gradient descent loop. In Figure 2a we provide translation
time from SQL implementations of four models, linear regression,
factorization machines, logistic regression and a two-layer neural
network based on features from the Boston Housing dataset. We
also report lines of generated and handwritten TensorFlow code
(see Figure 2b).

Table 3 presents translation time from a linear regression model
operating on different sets of categorical features of the Favorita
dataset, after they are converted to an 1-hot encoding representation
inside the database. In this experiment we focus on how translation
time is affected by increasing the number of involved features.

5https://www.cs.toronto.edu/ delve/data/boston/bostonDetail.html
6https://www.kaggle.com/c/favorita-grocery-sales-forecasting
7https://www.kaggle.com/gcarra/walmart

DEEM’21, June 20–25, 2021, Virtual Event, China Makrynioti and Ley-Wild, et al.

Table 3: Time to translate a SQL Linear Regression model
to TF code with various feature sets based on the Favorita
dataset

Categorical
features

Numeric features af-
ter 1-hot encoding

Translation
time (sec)

2 55 0.04
4 76 0.05
7 109 0.07
8 446 0.09

0 20,000,000 40,000,000 60,000,000 80,000,000
0

1,000

2,000

3,000

4,000

5,000

Observations

Si
ze

(M
B)

Universal matrix
Indicator & attribute matrices

(a) Size (MB)

100K 700K 7M 87M
0

5

10

15

20

25

Observations

Pe
rc
en
td

ec
re
as
e

(b) Percent decrease in time with at-
tribute and indicator matrices

Figure 3: Time performance and result size between export-
ing a universal matrix versus attribute and indicator matri-
ces as described in 4.1.1 for increasing number of observa-
tions on the Favorita dataset

Takeaways Experiments show that translation time takes a few
dozen milliseconds. Note that translation time is not affected by the
number of training observations, only by the lines of SQL code and
number of features, which affect the generation of exporting queries
similar to the ones in Listings 8 and 11. From the results in Table 3,
we can also observe that for the same MLmodel, translation is more
time-consuming as the number of feature tables increases, but the
increase remains within reasonable limits. Regarding the lines of
code, we observe that there might exist a small or even negligible
difference between the automatically generated and handwritten
code. This difference is due to the fact that generated code could
be more verbose, as we do not support the use of subqueries in
SQL code or because SQL does not support specific functions, such
as sigmoid and softmax. In TensorFlow the user can make use of
a wider range of math-related functions and avoid writing their
definitions. That being said both the generated and the handwritten
code are semantically equivalent and produce the same result.

6.2 Evaluating feature export with indicator
matrices

Using the Walmart and Favorita datasets, we compare the time to
export training data using the technique described in 4.1.1 versus
materializing the join between entity and attribute tables and gath-
ering all features in a universal matrix. Figures 3a and 3b show the
time performance and the size of the exported result using both
techniques for increasing input sizes and a set of 7 features (4 cat-
egorical and 3 numeric) from the Favorita dataset. Also, Table 4
presents results from the same experiment on the Walmart dataset.

Table 4: Time and size after exporting a universalmatrix ver-
sus attribute and indicator matrices as described in 4.1.1 on
Walmart dataset

Export method Time (ms) Size (MB)
Universal matrix 500.47 23.9
Indicator and attribute matrices 268.78 3.45

We observe that exporting features as individual attribute tables
and indicator matrices, as defined in Equation 6, reduces export
time by 5%-21%, as well as the size of the exported data by a factor
of 4 for the Favorita dataset. On the Walmart dataset the benefit
in time is 46%, whereas the decrease in size of the export result
reaches 85%. Indicator matrices are exported using a sparse rep-
resentation and they dominate exporting time in comparison to
columns from attribute tables, whose cardinalities are much smaller.
Results showcase a benefit, especially regarding export size, from
using this technique to transfer data between relations and tensors.
We leave a more extensive evaluation of the benefits and trade-offs
as future work.

6.3 Evaluating feature precomputation
Using the feature precomputation process described in 4.1.2, we
compare the time needed to export training data from the Favorita
dataset with and without precomputing the one-hot encoding of
shared categorical features and storing it in tables. Table 5 shows
time performance on exporting four different sets of categorical
features (the number of numeric features that is created after 1-hot
encoding is also reported).

The first three sets were exported on 80000000 observations.
Only the last one was exported on 13870445 observations as holiday
features of the Favorita dataset do not apply for most observations.
Favorita observations are based on three dimensions: items, stores
and dates. There are 4100 items, 54 stores and 1684 dates. When
precomputation is used, we compute the one-hot encoding of every
categorical feature and store the values in a table, which we join
with each observation during export. The naive version of this query
computes a one-hot encoding representation for every categorical
feature in every observation (similarly to Listing 11) ignoring the
fact that some features are shared among observations.

Time performance results indicate that feature precomputation
reduced exporting time on the Favorita dataset by ∼ 50% while the
time needed to precompute and store features in tables remains
low.

6.4 Comparison with Pandas
Pandas is a well-known data processing API in Python. We compare
the SQL query that is generated by our approach and is executed on
Postgres to produce a single matrix with features on either Favorita
orWalmart dataset, as it is benchmarked in section 6.2, to equivalent
code using the Pandas API. The purpose of this experiment is to
evaluate the performance of an RDBMS and a data processing API
for a typical type of query used in ML workflows, and showcase
the benefits of handling relational operations inside a database
system instead of exporting the data and deferring such operations
to Pandas.

Machine Learning in SQL by Translation to TensorFlow DEEM’21, June 20–25, 2021, Virtual Event, China

Table 5: Time (sec) to export training data with and without feature precomputation

Observations Cat. features/Num.
features after 1-hot

encoding

Time without
precomputation

Time with
precomputation

Precomputation
time

80000000
1/33 602.7 363.7 0.12
2/55 979.2 551.63 0.35
4/76 1331.7 630 0.48

13870445 8/446 355 122 0.75

100K 700K 7M 87M

0

50

100

150

Tuples

Ti
m
e
(s
)

Postgres
Pandas

(a) Favorita dataset

System Time (sec)
Postgres 0.5
Pandas 2.99

(b) Walmart dataset

Figure 4: Time performance of exporting features as a single
matrix using Postgres or Pandas

Figure 4 shows the time performance of Postgres and Pandas
on exporting 7 features in a single matrix based on the Favorita
and Walmart datasets. In case of Pandas, we assume that data are
already in memory and only the time of export query is measured.
If the data need to be read from files first, then the time until
exporting the features can be orders of magnitude larger. Results
showcase that for small amounts of data, i.e. 100K-700K tuples,
Postgres is 1.5-5 times faster than Pandas. For larger datasets we
see that this difference increases, up to the point where Pandas
does not complete execution and throws a memory error for 87M
tuples on the Favorita dataset.

Note that we did not tune any Postgres parameters, so potentially
its performance can be improved. Also, in Pandas we defined an
efficient order for joining the data. Pandas does not optimize the
join order by itself like an RDBMS does, and different orders can
have very different time performance. The join order we chose is
in favor of Pandas. Essentially, this implies that the users need to
do part of an RDBMS "work" to optimize Pandas operations, since
these are executed in a procedural fashion. Indicatively, in the case
of 7M tuples from the Favorita dataset different join orders result
in doubling the time of the Pandas join operation.

6.5 Comparison with MADlib
We also report the time for 10 training iterations of Linear Regres-
sion on TensorFlow and on MADlib. MADlib offers implementa-
tions of ML algorithms in UDFs that can be called in SQL queries.
For the comparison we run Linear Regression on different subsets
of the Favorita dataset. Both systems run on CPU. Table 6 shows
that TensorFlow requires 50% to 25% less time for up to 7M observa-
tions, but ends up being 4x faster thanMADlib for 70M observations.

Table 6: Runtime of 10 training iterations of Linear Regres-
sion on TensorFlow and MADlib (Favorita dataset)

Observations System Time (sec)

100K MADlib 3.77
TensorFlow 1.85

700K MADlib 34.46
TensorFlow 17.58

7M MADlib 276
TensorFlow 210.68

70M MADlib 3862
TensorFlow 805

For large datasets TensorFlow works with sparse matrices as well,
which in the case of 70M observations decreases running time fur-
ther to 413 seconds. MADlib also offers sparse vector columns but
these are not supported by all available models, e.g. the generalized
linear models used in this experiment do not support sparse vectors
and for this reason we needed to create a dense matrix of 28G. The
capability of TensorFlow to execute computations on GPUs can
decrease training time even further.

7 RELATEDWORK
In this section we discuss approaches to support ML and mathe-
matical optimization problems in RDBMSes, as well as other work
related to sql4ml.

7.1 ML in RDBMSes
Approaches to support ML in RDBMSes are developed across three
main directions: UDF-ing ML algorithms, learning over normalized
data and extending SQL with linear algebra. In the first direction
systems like MADlib [11], BigQuery ML 8 and SAP HANA PAL 9

offer implementations of ML algorithms as user-defined functions
(UDFs), which can be called as part of SQL queries. UDFs are imple-
mented in Python and C++ and are optimized for a specific database
system. Because of this, their development requires in-depth knowl-
edge of the internal design of the RDBMS. Our approach serves as
a layer between an RDBMS and an ML framework, translating SQL
queries to code executed on an ML framework. As SQL is highly
standardized, it offers portability between different RDBMSes and
does not require knowledge of database internals.

F [22], [2], [23] and AC/DC [13] follow the direction of learning
over normalized data and express a class of ML algorithms as a set
8https://cloud.google.com/bigquery-ml/docs
9https://www.sap.com/netherlands/products/hana.html

DEEM’21, June 20–25, 2021, Virtual Event, China Makrynioti and Ley-Wild, et al.

of relational queries involving aggregations over joins. The strong
point of this line of work lies in avoiding data denormalization,
which saves considerable overhead for large datasets and redun-
dancy in data representation. However, the proposed methods cover
a specific class of ML models, whose objective function is based on
least squares error plus ℓ2 regularizer, and focus on batch gradient
descent. For instance, logistic loss does not satisfy these proper-
ties. The extension to support more ML models and other solvers,
such as stochastic and coordinate gradient descent, is mentioned
in the aforementioned papers as an important, albeit probably not
straightforward, direction for future work. In our approach the
set of expressible models that can be formulated as optimization
problems is bounded by the expressivity of SQL regarding objective
functions. Also, it is straightforward to plug-in different variants
of gradient descent, when supported by the ML framework, by
automatically generating the appropriate code. Nevertheless, other
aspects of this line of work are orthogonal to sql4ml. For example,
since our workflow also starts in the database system, the optimiza-
tion with functional dependencies presented in [2] can be exploited
by our translation method in order to reduce the weights of a model.

Finally, recent work [26], [17], [8] proposes the extension of SQL
with matrices/vectors and a set of linear algebra operators. Work
in [12] combines this approach with optimizations on executing
recursion and large query plans on an RDBMS to make it suitable
for distributed machine learning. Again, we do not assume any
changes to the relational database system, nor to theML framework,
enabling portability. Moreover, through the use of anML framework
as a backend engine, we leverage useful ML-related functionality,
such as automatic differentiation, out of the box.

7.2 Mathematical optimization on relational
data

To the best of our knowledge, PaQL [6], SolveDB [24], MLog [16]
and SolverBlox [5], [18] are the closest systems to sql4ml. This line
of work models mathematical optimization problems on relational
data using queries, whose semantics are to find the values that
minimize/maximize an objective function. Objective functions are
defined in Datalog, SQL or a SQL-like tensor-based declarative
language. SolverBlox and [6] support only linear programming and
translate Datalog or SQL-based programs to an appropriate data
format consumed by a linear programming solver. SolveDB also
proposes an extension to the SQL syntax for optimization problems
and assumes that optimization solvers run in the process space of
the database system. MLog performs a two step translation: at first
from the user’s code in a declarative DSL to Datalog and then to
TensorFlow, which finally computes the weights for the objective
function. We describe in detail a translation method directly from
SQL to the TensorFlow API without using any other languages
for intermediate representations. Moreover, we discuss potential
inefficiencies in transferring data from relations to tensors and
propose optimization techniques.

7.3 Other related work
Spark’s machine learning library, MLlib [19], has made Spark’s
Dataframe API10 its primary API. A dataframe is conceptually
10https://spark.apache.org/docs/latest/sql-programming-guide.html

equivalent to a relation and is used as a uniform data structure
across ML algorithms and earlier steps of an ML workflow, such
as feature engineering. Internally and transparently to the user,
the implementations of the ML algorithms make use of optimized
linear algebra libraries, like Breeze11. Our approach has a different
target group, i.e. SQL users working with normalized data inside
an RDBMS.

Finally, AIDA [9] builds on the idea of moving relational compu-
tations from an embedded statistical Python library to an RDBMS. It
provides a DSL, whose syntax and semantics are similar to Python,
and a unified abstraction named TabularData, where users can
perform both linear and relational algebra operations. In the back-
ground, AIDA executes relational operations on the underlying
RDBMS’s SQL engine and linear algebra on NumPy. Although
sql4ml and AIDA share this idea of split computation, our approach
targets SQL and exploits more high-level capabilities of ML frame-
works, such as automatic differentiation and mathematical solvers.
Moreover, AIDA targets column-store RDBMSes, such as MonetDB,
whereas we implement our approach using a row-store.

8 CONCLUSION AND FUTUREWORK
We presented sql4ml, a system for expressing machine learning
models in SQL by defining their objective function, and automat-
ically training them on an ML framework, such as TensorFlow.
RDBMS users are unburdened from writing iterative training pro-
cesses and formulas for derivatives, while at the same time they
continue working inside the programming environment of a data-
base system. Towards this goal, we described the translation layer
between the RDBMS and TensorFlow, which turns the SQL for-
mulation into a representation that can be executed on the latter.
We also discussed techniques that can increase the efficiency of
transferring data between relations and tensors. Evaluation results
demonstrate that the translation from SQL to TensorFlow API is
completed in little and that the proposed optimization techniques
decrease the overhead of transferring data from the RDBMS to the
ML framework.

As future work we would like to investigate further the use of
sql4ml in defining and training deep neural networks, as well as
unsupervised ML models. Another very interesting direction is the
study of query/code optimization techniques, whose application
could result in more efficient code on the ML framework side. Re-
cent work on in-database machine learning [2] discusses the use
of functional dependencies in reducing the dimensionality of ML
models. Such techniques could prove useful in our approach as
well, even if the training of the ML model is executed outside the
database.

REFERENCES
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine
learning. In 12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16). 265–283.

11https://github.com/scalanlp/breeze

https://spark.apache.org/docs/latest/sql-programming-guide.html
https://github.com/scalanlp/breeze

Machine Learning in SQL by Translation to TensorFlow DEEM’21, June 20–25, 2021, Virtual Event, China

[2] Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and
Maximilian Schleich. 2018. In-Database Learning with Sparse Tensors. In Pro-
ceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (Houston, TX, USA) (SIGMOD/PODS ’18). ACM, New York, NY,
USA, 325–340. https://doi.org/10.1145/3196959.3196960

[3] Michael H. Böhlen, Oksana Dolmatova, Michael Krauthammer, Alphonse
Mariyagnanaseelan, Jonathan Stahl, and Timo Surbeck. 2020. Iterations for
Propensity Score Matching in MonetDB. In Advances in Databases and In-
formation Systems - 24th European Conference, ADBIS 2020, Lyon, France, Au-
gust 25-27, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12245),
Jérôme Darmont, Boris Novikov, and Robert Wrembel (Eds.). Springer, 189–203.
https://doi.org/10.1007/978-3-030-54832-2_15

[4] Vinayak R. Borkar, Yingyi Bu, Michael J. Carey, Joshua Rosen, Neoklis Polyzotis,
Tyson Condie, Markus Weimer, and Raghu Ramakrishnan. 2012. Declarative
Systems for Large-Scale Machine Learning. IEEE Data Eng. Bull. 35, 2 (2012),
24–32. http://sites.computer.org/debull/A12june/declare.pdf

[5] Conrado Borraz-Sánchez, Diego Klabjan, Emir Pasalic, and Molham Aref. 2018.
SolverBlox: Algebraic Modeling in Datalog. In Declarative Logic Programming:
Theory, Systems, and Applications, Michael Kifer and Yanhong A. Liu (Eds.). ACM
and Morgan & Claypool. To appear.

[6] Matteo Brucato, Juan Felipe Beltran, Azza Abouzied, and Alexandra Meliou. 2016.
Scalable Package Queries in Relational Database Systems. Proc. VLDB Endow. 9,
7 (March 2016), 576–587. https://doi.org/10.14778/2904483.2904489

[7] Lingjiao Chen, Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel. 2017. To-
wards Linear Algebra over Normalized Data. Proc. VLDB Endow. 10, 11 (Aug.
2017), 1214–1225. https://doi.org/10.14778/3137628.3137633

[8] Oksana Dolmatova, Nikolaus Augsten, and Michael H. Böhlen. 2020. A Relational
Matrix Algebra and Its Implementation in a Column Store. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data (Portland,
OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY,
USA, 2573–2587. https://doi.org/10.1145/3318464.3389747

[9] Joseph Vinish D’silva, Florestan De Moor, and Bettina Kemme. 2018. AIDA:
Abstraction for Advanced In-database Analytics. Proc. VLDB Endow. 11, 11 (July
2018), 1400–1413. https://doi.org/10.14778/3236187.3236194

[10] Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. 2012. Towards
a Unified Architecture for in-RDBMS Analytics. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data (Scottsdale, Arizona,
USA) (SIGMOD ’12). ACM, New York, NY, USA, 325–336. https://doi.org/10.
1145/2213836.2213874

[11] Joseph M. Hellerstein, Christoper Ré, Florian Schoppmann, Daisy Zhe Wang,
Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,
Kun Li, and Arun Kumar. 2012. The MADlib Analytics Library: Or MAD Skills,
the SQL. Proc. VLDB Endow. 5, 12 (Aug. 2012), 1700–1711. https://doi.org/10.
14778/2367502.2367510

[12] Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris Jer-
maine, and Zekai J. Gao. 2019. Declarative Recursive Computation on an RDBMS:
Or,Why You Should Use a Database for DistributedMachine Learning. Proc. VLDB
Endow. 12, 7 (March 2019), 822–835. https://doi.org/10.14778/3317315.3317323

[13] Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and
Maximilian Schleich. 2018. AC/DC: In-Database Learning Thunderstruck. In
Proceedings of the Second Workshop on Data Management for End-To-End Machine
Learning (Houston, TX, USA) (DEEM’18). ACM, New York, NY, USA, Article 8,
10 pages. https://doi.org/10.1145/3209889.3209896

[14] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochas-
tic Optimization. In 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
http://arxiv.org/abs/1412.6980

[15] Quoc V. Le, Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, and
Andrew Y. Ng. 2011. On optimization methods for deep learning. In ICML.
265–272. https://icml.cc/2011/papers/210_icmlpaper.pdf

[16] Xupeng Li, Bin Cui, Yiru Chen, Wentao Wu, and Ce Zhang. 2017. MLog: Towards
Declarative In-database Machine Learning. Proc. VLDB Endow. 10, 12 (Aug. 2017),
1933–1936. https://doi.org/10.14778/3137765.3137812

[17] Shangyu Luo, Zekai J. Gao, Michael N. Gubanov, Luis Leopoldo Perez, and Christo-
pher M. Jermaine. 2017. Scalable Linear Algebra on a Relational Database System.
In 33rd IEEE International Conference on Data Engineering, ICDE 2017, San Diego,
CA, USA, April 19-22, 2017. 523–534. https://doi.org/10.1109/ICDE.2017.108

[18] Nantia Makrynioti, Nikolaos Vasiloglou, Emir Pasalic, and Vasilis Vassalos. 2018.
Modelling Machine Learning Algorithms on Relational Data with Datalog. In
Proceedings of the Second Workshop on Data Management for End-To-End Machine
Learning (Houston, TX, USA) (DEEM’18). ACM, New York, NY, USA, Article 5,
4 pages. https://doi.org/10.1145/3209889.3209893

[19] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, and et al.
2016. MLlib: Machine Learning in Apache Spark. J. Mach. Learn. Res. 17, 1 (Jan.
2016), 1235–1241.

[20] Rajat Raina, Anand Madhavan, and Andrew Y. Ng. 2009. Large-Scale Deep
Unsupervised Learning Using Graphics Processors. In Proceedings of the 26th

Annual International Conference on Machine Learning (Montreal, Quebec, Canada)
(ICML ’09). Association for Computing Machinery, New York, NY, USA, 873–880.
https://doi.org/10.1145/1553374.1553486

[21] Raghu Ramakrishnan and Johannes Gehrke. 2003. Database Management Systems
(3 ed.). McGraw-Hill, Inc., New York, NY, USA.

[22] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. 2016. Learning Linear
Regression Models over Factorized Joins. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). ACM, New York, NY, USA, 3–18. https://doi.org/10.1145/2882903.2882939

[23] Maximilian Schleich, Dan Olteanu, Mahmoud Abo Khamis, Hung Ngo, and
XuanLong Nguyen. 2019. A Layered Aggregate Engine for Analytics Workloads.
In Proceedings of the 2019 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’19). ACM.

[24] Laurynas Šikšnys and Torben Bach Pedersen. 2016. SolveDB: Integrating Opti-
mization Problem Solvers Into SQL Databases. In Proceedings of the 28th Interna-
tional Conference on Scientific and Statistical Database Management (Budapest,
Hungary) (SSDBM ’16). Association for Computing Machinery, New York, NY,
USA, Article 14, 12 pages. https://doi.org/10.1145/2949689.2949693

[25] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. 2019.
Fast Deep Neural Network Training on Distributed Systems and Cloud TPUs.
IEEE Trans. Parallel Distrib. Syst. 30, 11 (Nov. 2019), 2449–2462. https://doi.org/
10.1109/TPDS.2019.2913833

[26] Ying Zhang, Martin Kersten, and Stefan Manegold. 2013. SciQL: Array Data Pro-
cessing Inside an RDBMS. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (New York, New York, USA) (SIGMOD ’13).
ACM, New York, NY, USA, 1049–1052. https://doi.org/10.1145/2463676.2463684

https://doi.org/10.1145/3196959.3196960
https://doi.org/10.1007/978-3-030-54832-2_15
http://sites.computer.org/debull/A12june/declare.pdf
https://doi.org/10.14778/2904483.2904489
https://doi.org/10.14778/3137628.3137633
https://doi.org/10.1145/3318464.3389747
https://doi.org/10.14778/3236187.3236194
https://doi.org/10.1145/2213836.2213874
https://doi.org/10.1145/2213836.2213874
https://doi.org/10.14778/2367502.2367510
https://doi.org/10.14778/2367502.2367510
https://doi.org/10.14778/3317315.3317323
https://doi.org/10.1145/3209889.3209896
http://arxiv.org/abs/1412.6980
https://icml.cc/2011/papers/210_icmlpaper.pdf
https://doi.org/10.14778/3137765.3137812
https://doi.org/10.1109/ICDE.2017.108
https://doi.org/10.1145/3209889.3209893
https://doi.org/10.1145/1553374.1553486
https://doi.org/10.1145/2882903.2882939
https://doi.org/10.1145/2949689.2949693
https://doi.org/10.1109/TPDS.2019.2913833
https://doi.org/10.1109/TPDS.2019.2913833
https://doi.org/10.1145/2463676.2463684

	Abstract
	1 Introduction
	2 Overview of approach
	2.1 ML as Optimization Problems
	2.2 End-to-end workflow
	2.3 Overview Examples

	3 From SQL to TensorFlow
	4 Moving data
	4.1 Optimizing exports

	5 Benefits of approach
	6 Experiments
	6.1 Translation time from SQL to TensorFlow
	6.2 Evaluating feature export with indicator matrices
	6.3 Evaluating feature precomputation
	6.4 Comparison with Pandas
	6.5 Comparison with MADlib

	7 Related work
	7.1 ML in RDBMSes
	7.2 Mathematical optimization on relational data
	7.3 Other related work

	8 Conclusion and Future Work
	References

